113 research outputs found

    Gas-liquid mass transfer : a comparison of down-and up-pumping axial flow impellers with radial impellers

    Get PDF
    The performance of a down- and up-pumping pitched blade turbine and A315 for gas-liquid dispersion and mass transfer was evaluated and then compared with that of Rushton and Scaba turbines in a small laboratory scale vessel. The results show that when the axial flow impellers are operated in the up-pumping mode, the overall performance is largely improved compared with the down-pumping configuration. Compared with the radial turbines, the up-pumping A315 has a high gas handling capacity, equivalent to the Scaba turbine and is economically much more efficient in terms of mass transfer than both turbines. On the other hand, the uppumping pitched blade turbine is not as well adapted to such applications. Finally, the axial flow impellers in the down-pumping mode have the lowest performance of all the impellers studied, although the A315 is preferred of the pitched blade turbine

    Liquid-liquid equilibria of UCON + (sodium or potassium) phosphate salt aqueous two-phase systems at 23 °C

    Get PDF
    Six phase diagrams for UCON−phosphate salt aqueous two-phase systems (ATPSs), at 23 °C, are presented. The ATPSs were obtained combining UCON (a random copolymer of 50 % ethylene oxide and 50 % propylene oxide) and a phosphate salt (KH2PO4, K2HPO4, potassium phosphate buffer pH = 7, NaH2PO4, Na2HPO4, and sodium phosphate buffer pH = 7). Among the salts used, Na2HPO4 proved to be the most effective in ATPS formation, providing the greatest heterogeneous region in the phase diagram. The previous established relation between the anion valence and the concentration needed to form a biphasic system was confirmed: higher valence requires lower concentration. Na+ salts require, in all cases, lower concentration to form ATPSs than the corresponding K+ salts. The size of the heterogeneous region in the phase diagrams increases with an increase of the pH value of the salt used in ATPS preparation.Fundação para a CiĂȘncia e a Tecnologia (FCT) - SFRH/BD/43439/2008Fundo Europeu de Desenvolvimento Regional (FEDER) - FEDER/POCI/201

    Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content

    Get PDF
    The slow development of microalgal biotechnology is due to the failure in the design of large-scale photobioreactors (PBRs) where light energy is efficiently utilized. In this work, both the quality and the amount of light reaching a given point of the PBR were determined and correlated with cell density, light path length, and PBR geometry. This was made for two different geometries of the downcomer of an airlift PBR using optical fiber technology that allows to obtain information about quantitative and qualitative aspects of light patterns. This is important since the ability of microalgae to use the energy of photons is different, depending on the wavelength of the radiation. The results show that the circular geometry allows a more efficient light penetration, especially in the locations with a higher radial coordinate (r) when compared to the plane geometry; these observations were confirmed by the occurrence of a higher fraction of illuminated volume of the PBR for this geometry. An equation is proposed to correlate the relative light intensity with the penetration distance for both geometries and different microalgae cell concentrations. It was shown that the attenuation of light intensity is dependent on its wavelength, cell concentration, geometry of PBR, and the penetration distance of light.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Integration of aqueous (micellar) two-phase systems on the proteins separation

    Get PDF
    A two-step approach combining an aqueous two-phase system (ATPS) and an aqueous micellar two-phase system (AMTPS), both based on the thermo-responsive copolymer Pluronic L-35, is here proposed for the purification of proteins and tested on the sequential separation of three model proteins, cytochrome c, ovalbumin and azocasein. Phase diagrams were established for the ATPS, as well as co-existence curves for the AMTPS. Then, by scanning and choosing the most promising systems, the separation of the three model proteins was performed. The aqueous systems based on Pluronic L-35 and potassium phosphate buffer (pH = 6.6) proved to be the most selective platform to separate the proteins (SAzo/Cyt = 1667; SOva/Cyt = 5.33 e SAzo/Ova = 1676). The consecutive fractionation of these proteins as well as their isolation from the aqueous phases was proposed, envisaging the industrial application of this downstream strategy. The environmental impact of this downstream process was studied, considering the carbon footprint as the final output. The main contribution to the total carbon footprint comes from the ultrafiltration (~ 49%) and the acid precipitation (~ 33%) due to the energy consumption in the centrifugation. The ATPS step contributes to ~ 17% while the AMTPS only accounts for 0.30% of the total carbon footprint.publishe

    The effect of salts on the liquid–liquid phase equilibria of PEG600 + salt aqueous two-phase systems

    Get PDF
    Six new ATPSs were prepared by combining polyethylene glycol PEG600 with potassium citrate, dipotassium hydrogen phosphate, sodium formate, potassium formate, sodium sulfate, and lithium sulfate. Complete phase diagrams, including the binodal curve and three tie-lines, were determined at 23 °C. The experimental data obtained for the binodal curve were successfully adjusted to the Merchuk equation, and the reliability of tie-line data was confirmed using the equations suggested by Othmer–Tobias and Bancroft. The ability of each ion to induce ATPS formation was investigated. Na+ proved to be more effective in ATPS formation than K+ and Li+. For potassium salts, the order observed for the effectiveness of the anions was: HPO42– > C6H5O73– > HCO2–. Regarding the sodium salts, it was found that SO42– is clearly more effective than HCO2–. The position of the ions in the Hofmeister series and their free energy of hydration (ΔGhyd) were used to explain the ability of the ions to induce PEG salting-out. Furthermore, the effective excluded volume (EEV) of the salts was determined and the following order was found: Na2SO4 > K2HPO4 > Li2SO4 > K3C6H5O7 > NaCHO2 > KCHO2. Similar order was obtained when analyzing the size of the heterogeneous regions, suggesting the practical use of EEV as a comparison parameter between different ATPSs.This work is partially supported by project PEst-C/EQB/LA0020/2011, financed by FEDER through COMPETE-Programa Operacional Factores de Competitividade and by FCT-Fundacao para a Ciencia e a Tecnologia. Sara Silverio acknowledges her Ph.D. grant from FCT (SFRH/BD/43439/2008)

    Applications of yeast flocculation in biotechnological processes

    Get PDF
    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer’s yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous ÎČ-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.Fundação para a CiĂȘncia e a Tecnologia (FCT) – PRAXIS XXI - BD11306/97

    Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    Get PDF
    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process
    • 

    corecore