22 research outputs found

    NMR-Based Plasma Metabolomics at Set Intervals in Newborn Dairy Calves with Severe Sepsis

    Get PDF
    The aim of this first study was to reveal the new potential biomarkers by a metabolomics approach in severe septic calves. Sepsis is a common cause of morbidity and mortality in newborn dairy calves. The main challenges with the use of biomarkers of sepsis in domestic animals are their availability, cost, and time required to obtain a result. Metabolomics may offer the potential to identify biomarkers that define calf sepsis in terms of combined clinical, physiological, and pathobiological abnormalities. To our knowledge, this is the first study presenting an NMR- (nuclear magnetic resonance-) based plasma metabolomics at set intervals in neonatal septic calves. Twenty neonatal dairy calves with severe sepsis and ten healthy calves were used. Hematological and biochemical health profiles were gathered in plasma samples at set intervals. Similarly, NMR spectra were acquired. All diseased animals (except one) died after 72 hours. Clinical and laboratory results were in accordance with those of severe septic animals. Multivariate analysis on NMR plasma spectra proved to be an excellent tool for faster identification of calves with severe sepsis from healthy animals. The NMR-based metabolomic profile may contribute to the better understanding of severe sepsis in newborn calves

    The metabolic fingerprints of HCV and HBV infections studied by Nuclear Magnetic Resonance Spectroscopy

    Get PDF
    Abstract Few studies are available on metabolic changes in liver injuries and this is the first metabolomic study evaluating a group of HCV-positive patients, before and after viral eradication via DAA IFN-free regimens, using 1H-NMR to characterize and compare their serum fingerprints to naïve HBV-patients and healthy donors. The investigation clearly shows differences in the metabolomic profile of HCV patients before and after effective DAA treatment. Significant changes in metabolites levels in patients undergoing therapy suggest alterations in several metabolic pathways. It has been shown that 1H-NMR fingerprinting approach is an optimal technique in predicting the specific infection and the healthy status of studied subjects (Monte-Carlo cross validated accuracies: 86% in the HCV vs HBV model, 98.7% in the HCV vs HC model). Metabolite data collected support the hypothesis that the HCV virus induces glycolysis over oxidative phosphorylation in a similar manner to the Warburg effect in cancer, moreover our results have demonstrated a different action of the two viruses on cellular metabolism, corroborating the hypothesis that the metabolic perturbation on patients could be attributed to a direct role in viral infection. This metabolomic study has revealed some alteration in metabolites for the first time (2-oxoglutarate and 3-hydroxybutrate) concerning the HCV-infection model that could explain several extrahepatic manifestations associated with such an infection

    Grazing affects metabolic pattern of individual cow milk

    Get PDF
    Effective traceability tools able to characterize milk from pasture are important to safeguard low-input farming systems, niche dairy products, and local traditions. The aims of the present study were to investigate the ability of proton nuclear magnetic resonance (1H NMR) spectroscopy to discriminate between milk produced from cows before and after the beginning of the grazing season, and to assess the effects of grazing on milk metabolites. The research trial involved a single alpine holding with 72 lactating cows. Individual milks were repeatedly sampled from the same animals before (i.e., d −3 and −1) and after (i.e., d 2, 3, 7, 10, and 14) the onset of the grazing period. One-dimensional 1H NMR spectra of milk extracts were collected through a Bruker spectrometer. Random forest discriminant analysis was applied to 1H NMR spectra to predict the period of collection for each sample. Data concerning the relative abundance of milk metabolites were analyzed through a linear mixed model, which included the fixed effects of period of sampling, cow breed, stage of lactation, and parity, and the random effect of cow nested within breed. The random forest model exhibited great accuracy (93.1%) in discriminating between samples collected on d −3, −1, 2, and 3 and those collected on d 7, 10, and 14. Univariate analysis performed on the 40 detected metabolites highlighted that milk samples from pasture had lower levels of 14 compounds (with fumarate being the most depressed metabolite) and greater levels of 15 compounds (with methanol and hippurate being the most elevated metabolites). Results indicate that milk 1H NMR spectra are promising to identify milk produced in different conditions. Also, our study highlights that grazing is associated with significant changes of milk metabolic profile, suggesting the potential use of several metabolites as indicators of farm management

    Lipid and metabolite correlation networks specific to clinical and biochemical covariate show differences associated with sexual dimorphism in a cohort of nonagenarians

    Get PDF
    This study defines and estimates the metabolite-lipidic component association networks constructed from an array of 20 metabolites and 114 lipids identified and quantified via NMR spectroscopy in the serum of a cohort of 355 Italian nonagenarians and ultra-nonagenarian. Metabolite-lipid association networks were built for men and women and related to an array of 101 clinical and biochemical parameters, including the presence of diseases, bio-humoral parameters, familiarity diseases, drugs treatments, and risk factors. Different connectivity patterns were observed in lipids, branched chains amino acids, alanine, and ketone bodies, suggesting their association with the sex-related and sex-clinical condition-related intrinsic metabolic changes. Furthermore, our results demonstrate, using a holistic system biology approach, that the characterization of metabolic structures and their dynamic inter-connections is a promising tool to shed light on the dimorphic pathophysiological mechanisms of aging at the molecular level.</p

    Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson’s disease patients

    Get PDF
    Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress

    Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients.

    Get PDF
    Parkinson's disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress
    corecore