3,212 research outputs found
A Complementary Resistive Switch-based Crossbar Array Adder
Redox-based resistive switching devices (ReRAM) are an emerging class of
non-volatile storage elements suited for nanoscale memory applications. In
terms of logic operations, ReRAM devices were suggested to be used as
programmable interconnects, large-scale look-up tables or for sequential logic
operations. However, without additional selector devices these approaches are
not suited for use in large scale nanocrossbar memory arrays, which is the
preferred architecture for ReRAM devices due to the minimum area consumption.
To overcome this issue for the sequential logic approach, we recently
introduced a novel concept, which is suited for passive crossbar arrays using
complementary resistive switches (CRSs). CRS cells offer two high resistive
storage states, and thus, parasitic sneak currents are efficiently avoided.
However, until now the CRS-based logic-in-memory approach was only shown to be
able to perform basic Boolean logic operations using a single CRS cell. In this
paper, we introduce two multi-bit adder schemes using the CRS-based
logic-in-memory approach. We proof the concepts by means of SPICE simulations
using a dynamical memristive device model of a ReRAM cell. Finally, we show the
advantages of our novel adder concept in terms of step count and number of
devices in comparison to a recently published adder approach, which applies the
conventional ReRAM-based sequential logic concept introduced by Borghetti et
al.Comment: 12 pages, accepted for IEEE Journal on Emerging and Selected Topics
in Circuits and Systems (JETCAS), issue on Computing in Emerging Technologie
Suggested hurricane operational scenario for GOES I-M
Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products
Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices
Highly accurate and predictive models of resistive switching devices are
needed to enable future memory and logic design. Widely used is the memristive
modeling approach considering resistive switches as dynamical systems. Here we
introduce three evaluation criteria for memristor models, checking for
plausibility of the I-V characteristics, the presence of a sufficiently
non-linearity of the switching kinetics, and the feasibility of predicting the
behavior of two anti-serially connected devices correctly. We analyzed two
classes of models: the first class comprises common linear memristor models and
the second class widely used non-linear memristive models. The linear memristor
models are based on Strukovs initial memristor model extended by different
window functions, while the non-linear models include Picketts physics-based
memristor model and models derived thereof. This study reveals lacking
predictivity of the first class of models, independent of the applied window
function. Only the physics-based model is able to fulfill most of the basic
evaluation criteria.Comment: 9 pages; accepted for IEEE TCAS-
Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography
Quantum state reconstruction involves measurement devices that are usually
described by idealized models, but not known in full detail in experiments. For
weak propagating microwaves, the detection process requires linear amplifiers
which obscure the signal with random noise. Here, we introduce a theory which
nevertheless allows one to use these devices for measuring all quadrature
moments of propagating quantum microwaves based on cross-correlations from a
dual-path amplification setup. Simultaneously, the detector noise properties
are determined, allowing for tomography. We demonstrate the feasibility of our
novel concept by proof-of-principle experiments with classical mixtures of weak
coherent microwaves.Comment: 11 pages, 3 figure
- …