55 research outputs found

    RANDOM FORESTS FOR CLASSIFYING MULTI-TEMPORAL SAR DATA

    Get PDF
    The accuracy of supervised land cover classifications depends on several factors like the chosen algorithm, adequate training data and the selection of features. In regard to multi-temporal remote sensing imagery statistical classifier are often not applicable. In the study presented here, a Random Forest was applied to a SAR data set, consisting of 15 acquisitions. A detailed accuracy assessment shows that the Random Forest significantly increases the efficiency of the single decision tree and can outperform other classifiers in terms of accuracy. A visual interpretation confirms the statistical accuracy assessment. The imagery is classified into more homogeneous regions and the noise is significantly decreased. The additional time needed for the generation of Random Forests is little and can be justified. It is still a lot faster than other state-of-the-art classifiers. 1

    Spatially Explicit Estimation of Clay and Organic Carbon Content in Agricultural Soils Using Multi-Annual Imaging Spectroscopy Data

    Get PDF
    Information on soil clay and organic carbon content on a regional to local scale is vital for a multitude of reasons such as soil conservation, precision agriculture, and possibly also in the context of global environmental change. The objective of this study was to evaluate the potential of multi-annual hyperspectral images acquired with the HyMap sensor (450–2480 nm) during three flight campaigns in 2004, 2005, and 2008 for the prediction of clay and organic carbon content on croplands by means of partial least squares regression (PLSR). Supplementary, laboratory reflectance measurements were acquired under standardized conditions. Laboratory spectroscopy yielded prediction errors between 19.48 and 35.55 g kg−1 for clay and 1.92 and 2.46 g kg−1 for organic carbon. Estimation errors with HyMap image spectra ranged from 15.99 to 23.39 g kg−1 for clay and 1.61 to 2.13 g kg−1 for organic carbon. A comparison of parameter predictions from different years confirmed the predictive ability of the models. BRDF effects increased model errors in the overlap of neighboring flight strips up to 3 times, but an appropriated preprocessing method can mitigate these negative influences. Using multi-annual image data, soil parameter maps could be successively complemented. They are exemplarily shown providing field specific information on prediction accuracy and image data source

    Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series

    Get PDF
    Automated monitoring systems that can capture wetlands’ high spatial and temporal variability are essential for their management. SAR-based change detection approaches offer a great opportunity to enhance our understanding of complex and dynamic ecosystems. We test a recently-developed time series change detection approach (S1-omnibus) using Sentinel-1 imagery of two wetlands with different ecological characteristics; a seasonal isolated wetland in southern Spain and a coastal wetland in the south of France. We test the S1-omnibus method against a commonly-used pairwise comparison of consecutive images to demonstrate its advantages. Additionally, we compare it with a pairwise change detection method using a subset of consecutive Landsat images for the same period of time. The results show how S1-omnibus is capable of capturing in space and time changes produced by water surface dynamics, as well as by agricultural practices, whether they are sudden changes, as well as gradual. S1-omnibus is capable of detecting a wider array of short-term changes than when using consecutive pairs of Sentinel-1 images. When compared to the Landsat-based change detection method, both show an overall good agreement, although certain landscape changes are detected only by either the Landsat-based or the S1-omnibus method. The S1-omnibus method shows a great potential for an automated monitoring of short time changes and accurate delineation of areas of high variability and of slow and gradual changes

    Quantifying the Impacts of Environmental Factors on Vegetation Dynamics over Climatic and Management Gradients of Central Asia

    Get PDF
    Currently there is a lack of quantitative information regarding the driving factors of vegetation dynamics in post-Soviet Central Asia. Insufficient knowledge also exists concerning vegetation variability across sub-humid to arid climatic gradients as well as vegetation response to different land uses, from natural rangelands to intensively irrigated croplands. In this study, we analyzed the environmental drivers of vegetation dynamics in five Central Asian countries by coupling key vegetation parameter “overall greenness” derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI time series data, with its possible factors across various management and climatic gradients. We developed nine generalized least-squares random effect (GLS-RE) models to analyze the relative impact of environmental factors on vegetation dynamics. The obtained results quantitatively indicated the extensive control of climatic factors on managed and unmanaged vegetation cover across Central Asia. The most diverse vegetation dynamics response to climatic variables was observed for “intensively managed irrigated croplands”. Almost no differences in response to these variables were detected for managed non-irrigated vegetation and unmanaged (natural) vegetation across all countries. Natural vegetation and rainfed non-irrigated crop dynamics were principally associated with temperature and precipitation parameters. Variables related to temperature had the greatest relative effect on irrigated croplands and on vegetation cover within the mountainous zone. Further research should focus on incorporating the socio-economic factors discussed here in a similar analysi

    Monitoring Land-Use Change in Nakuru (Kenya) Using Multi-Sensor Satellite Data

    No full text

    “Bring Back the Land”—A Call to Refocus on the Spatial Dimension of Zimbabwe’s Land Reform

    No full text
    In this article, we argue that research on land reform in the nation of Zimbabwe has overlooked possibilities of integrating geospatial methods into analyses and, at the same time, geographers have not adequately developed techniques for this application. Scholars have generally been captured within the debate focused on the success or failure of the Zimbabwean land reform program, and have neglected to analyze what has occurred where during the process of “fast-track land reform”. To date, no extensive national dataset of land ownership change, and the effect of this change on land use planning strategies, has been developed within the scientific community. As a result, most publications, even very detailed and thorough ones, have been based on regional case studies, broad estimates, or on outdated, cross-referenced statistics. To overcome the lack of spatio-temporal data, we propose an analytic framework to map Zimbabwe’s fast-track land reform and its country-wide effects. It emphasizes the potential of geographic information systems and satellite remote sensing to provide an objective basis for future studies of the subject

    Monitoring Forest Dynamics in the Andean Amazon: The Applicability of Breakpoint Detection Methods Using Landsat Time-Series and Genetic Algorithms

    No full text
    The Andean Amazon is an endangered biodiversity hot spot but its forest dynamics are less studied than those of the Amazon lowland and forests from middle or high latitudes. This is because its landscape variability, complex topography and cloudy conditions constitute a challenging environment for any remote-sensing assessment. Breakpoint detection with Landsat time-series data is an established robust approach for monitoring forest dynamics around the globe but has not been properly evaluated for implementation in the Andean Amazon. We analyzed breakpoint detection-generated forest dynamics in order to determine its limitations when applied to three different study areas located along an altitude gradient in the Andean Amazon in Ecuador. Using all available Landsat imagery for the period 1997–2016, we evaluated different pre-processing approaches, noise reduction techniques, and breakpoint detection algorithms. These procedures were integrated into a complex function called the processing chain generator. Calibration was not straightforward since it required us to define values for 24 parameters. To solve this problem, we implemented a novel approach using genetic algorithms. We calibrated the processing chain generator by applying a stratified training sampling and a reference dataset based on high resolution imagery. After the best calibration solution was found and the processing chain generator executed, we assessed accuracy and found that data gaps, inaccurate co-registration, radiometric variability in sensor calibration, unmasked cloud, and shadows can drastically affect the results, compromising the application of breakpoint detection in mountainous areas of the Andean Amazon. Moreover, since breakpoint detection analysis of landscape variability in the Andean Amazon requires a unique calibration of algorithms, the time required to optimize analysis could complicate its proper implementation and undermine its application for large-scale projects. In exceptional cases when data quality and quantity were adequate, we recommend the pre-processing approaches, noise reduction algorithms and breakpoint detection algorithms procedures that can enhance results. Finally, we include recommendations for achieving a faster and more accurate calibration of complex functions applied to remote sensing using genetic algorithms
    corecore