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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Assessment of differences in multi-sensoral
remote sensing imageries caused by 
discrepancies in the relative spectral response 
functions

INTRODUCTION

Spectral vegetation indices derived from satellite observations in the near infrared and 

visible wavelengths, are widely used within the remote sensing community. Most commonly 

applied for analysing temporal and spatial vegetation dynamics is the Normalized 

Difference Vegetation Index (NDVI) [1], defined as: 

(1)

where RED and NIR denote the spectral reflectance measurements acquired in the red and 

near-infrared spectrum. Vital green plants absorb solar radiation in the photosynthetically 

active radiation (PAR) spectral region, which is their source of energy for the

photosynthesis process. On the other hand leaf cells scatter (e.g., reflect and transmit) solar 

radiation in the near-infrared spectral region. The energy level per photon in that domain 

would result in over-heating the plant and possibly damage the tissues when absorped. 

Hence, vital green plants exhibit rather high NDVI values, while diseased vegetation or non-

vegetated areas feature rather low or even negative NDVI values (e.g., water).

 For multi-temporal vegetation monitoring or change analysis, a combination of multi-

sensoral NDVI is often necessary. However, due to different sensor characteristics (e.g., 

sensor geometry, spatial or radiometric resolution and relative spectral response functions 

(RSR)) the NDVI can vary. Within this study the focus will be laid on the relative spectral 

response functions. Whereby, signature variations are introduced because the sensors 

receive slightly different components of the reflectance spectra of the illuminated target. 

Several studies have analysed the offset in data products caused by these spectral 

)(
)(

REDNIR
REDNIRNDVI

+
−=

287287287



characteristics and introduced approaches to minimize those variations [2]-[6].

For the analysis multispectral bands of the satellites Landsat 5 TM, SPOT 5, Aster and 

QuickBird were simulated by the use of hyperspectral bands from the airborne HyMap 

sensor. Variations to original satellite data caused by different spatial resolution or other

effects are not considered by the sensor simulation and will not be taken into account for the 

intercalibration process.

After generating each simulated image the NDVI was calculated and the resulting NDVI-

varieties were analysed. An empirical cross-calibration method was finally chosen for the 

intercalibration process. 

METHODS AND DATA

Data for senor simulation

The flight campaign with the airborne Hyperspectral Mapper (HyMap) took place on 28th

May 2005 (12.00). HyMap acquires data in 128 bands, with a bandwidth of 15nm in the VIS 

and NIR region by a geometric resolution of 4m. HyVista corp. and the DLR (German 

Aerospace Center) carried out the orthorectification and atmospheric correction of the data. 

Sensor characteristics of the simulated satellites

Spectral bands are characterized by their spectral range, bandwidth, center wavelength and 

full width at half maximum (FWHM). The relative spectral response function takes all theses 

features into account and is defined by the effective spectral quantum efficiency (QE) of the 

detector, including features like the type-dependent sensitivity of the CCD, losses due to 

light reflecting and transmitting components of the detector (e.g. optics, mirrors, filters, 

coatings etc.) [7]. 

Figure1 illustrates the RSR functions of the different used satellite sensors (Landsat 5 TM, 

SPOT 5, Aster, QuickBird). The curves differ in shape, central wavelength location and the 

degree of overlap between the bands. Especially in the region of the red edge (red-NIR

translation) (680~800 nm) the sensors vary from each other.
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Figure 1. Variations in the red and near-infrared RSR functions among the used earth observing satellites 

and the spectral profile of two different agricultural targets as reference.

SENSOR SIMULATION

For the differences assessment within the imageries caused by variable RSR-functions the 

four satellite sensors were simulated using the hyperspectral image. In the first step each 

HyMap center wavelength was assigned to the mean RSR-value (in the range of FWHM of 

the hyperspectral band) of the simulating band. In a second step the hyperspectral 

reflectance values of each pixel were multiplied by the corresponding RSR-values of the 

simulating band. The sum of these products was then divided by the sum of the band-

specific RSR-values. For the multispectral sensor simulation, each band was simulated 

according to the following equation: 

(2)

with Rsimb as the simulated pixel reflectance value of the simulated band, Ri  pixel 

reflectance value of the HyMap band and rsrb,i  relative spectral response value of the 

simulating band at each HyMap corresponding wavelength [7].

The validation of the simulation performance was analysed on the basis of a pre-processed

Landsat 5 TM scene (28.05.05; 10.30 am) and the simulated Landsat 5 TM image based 

on an airborne HyMap scene (28.05.05; 12.00 am) [7].
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The calculated reflectance and NDVI differences are very marginal with an absolute NDVI 

difference of 0.626% (Tab. 1). Regarding the real differences between original sensors, 

they range from 1 ~ 4% for e.g. Landsat 5 TM and Landsat 7 ETM+ [8]. With the marginal 

differences achieved here, this accurate simulation method is appropriate for analyzing the 

impact of different RSR functions on the NDVI.

Table 1. NDVI differences between the simulated and the original imagery.

SIMULATED ORIGINAL DIFFERENCE

MEAN STDEV MEAN STDEV absolute in percent

NDVI 0.635 0.277 0.639 0.258 -0.004 -0.626

NDVI-INTERCALIBRATION

In Table 2 variations between the NDVI of the four simulated sensors are displayed. 

Differences between SPOT5 and the other sensors feature the widest divergences. Another 

obvious feature is that the differences between Aster and QuickBird are the smallest both 

having similar RSR curves.

The general relationships between all sensors can be described as followed. SPOT5 

features the highest NDVI values, then Landsat 5 TM, Aster, and the lowest NDVI values 

exhibits QuickBird. 

Table 2. MIN, MAX and MEAN NDVI differences and % difference between the simulated sensors.

Min NDVI 
differences

Max NDVI 
differences

Mean NDVI 
differences

Differences
(%)

SPOT5-Aster -0.116 0.104 0.012 1.818
SPOT5-Landsat 5TM -0.157 0.126 0.009 1.364
SPOT5-QuickBird -0.064 0.099 0.045 7.087
Landsat 5TM-Aster -0.088 0.091 0.003 0.472
Landsat 5TM-QuickBird -0.074 0.083 0.013 1.970
QuickBird-Aster -0.058 0.040 -0.002 -0.322

In general a similar result was found by [4] when trying to model the NDVI inter-sensor

relationship. They proposed to model the relationship with a higher polynomial order. The 

regression coefficients [R²] for polynomials of different order vary between R²= 0.73 and R²= 

0.98 depending on the sensor pairs compared and the order of polynomial.  The best 

correlation results were found for a polynomial of the sixth order. 
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VALIDATION OF THE NDVI-INTERCALIBRATION

In Table 3 the differences between the sensors after the cross-calibration are displayed. 

The results for the intercalibration feature a great enhancement in regard to the non-

calibrated sensors (Tab. 2). Thus the differences between SPOT5 and QuickBird, which 

were the biggest difference before intercalibration, decreased from 7.09 % to –0.15 % or 

0.16 %, depending on which sensor was taken as the target. Overall, the best results with 

the smallest bias errors were achieved for translating SPOT5 into Aster and QuickBird. In 

general the magnitudes of error from translating the sensors into each other lie between -

0.15 and 0.61 %, which are good result when comparing it with the results from [3], who 

reached a precision of 1-2% or [4] with an accuracy of ~2%.

When comparing the results of the sixth order intercalibration with the ones of a second 

order approach [9] it becomes obvious that the sixth order is able to model the differences 

in a more accurate way. For the second order modeling the NDVI difference after the 

intercalibration were in the range of –0.91 to 0.80 %, being now significantly smaller.

Table 3. MIN, MAX, MEAN differences and % difference between the original NDVI imagery and the

cross-calibrated image. Differences were taken between the original sensor and the cross-calibrated

sensor, which is still named after its origin.

original minus cross-
calibrated NDVI image

Min NDVI 
differences

Max NDVI 
differences

Mean NDVI 
differences

Mean NDVI 
differences (%)

SPOT5-Aster -0.445 0.068 -0.001 -0.152
SPOT5-Landsat 5TM -0.797 0.106 0.004 0.606
SPOT5-QuickBird -0.3307 0.052 -0.001 -0.152
Landsat 5TM-Aster -0.100 0.964 -0.002 -0.315
Landsat 5TM-QuickBird -0.084 0.910 -0.004 -0.630
Landsat 5TM-SPOT5 -0.107 0.954 -0.003 -0.472
QuickBird-Aster -0.057 0.031 0.001 0.161
QuickBird-Landsat 5TM -0.609 0.0784 0.004 0.483
QuickBird-SPOT5 -0.049 0.221 0.001 0.161
Aster-Landsat 5TM -0.675 0.096 0.002 0.320
Aster-QuickBird -0.030 0.058 -0.001 -0.160
Aster-SPOT5 -0.067 0.225 -0.001 -0.160

DISCUSSION AND CONCLUSION

The sensor simulation method using airborne hyperspectral data performed well. The 

residual NDVI differences between the simulated and an original Landsat 5 TM image, 

added up to only 0.62%. When comparing the simulation result with actually proven 

discrepancies between different satellite sensors [8] the differences between the simulated 
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image and an original image were significantly smaller then the actually discovered NDVI 

differences of 1% to 4%. 

The analysed differences in NDVI between the source and target sensors were found to 

have rather complex patterns, which could be best modelled by sixth order polynomials as 

supposed by [4] and [9]. The chosen empirical NDVI correction method then performed 

well, reducing the NDVI differences by 98% for the comparison SPOT5 vs. QuickBird (best 

case) and by 50% for the relationship QuickBird vs. Aster (worst case). When comparing 

these results with a second order intercalibration, reducing the differences round 94% for 

SPOT5 vs. QuickBird or by 5% for QuickBird vs. Aster the sixth order method, performed 

significantly better [9]. Also when comparing it with the results from [4], who reduced the 

differences by 80% and 65%, respectively the higher order polynomial performed better.

Generally, the results indicate that the NDVI intercalibration is a reasonable first step of a 

processing chain for multi-sensoral satellite data to ensure the comparability of achieved 

results.

Acknowledgment
The authors would like to thank Dr. M. Braun from the ZFL for organizing the HyMap flight campaign in Bonn and A. Moll (ZFL) 
for helping with the IDL programming of the sensor simulation program. The study was realized in the framework of the project 
ENVILAND (FKZ 50EE0404) funded by the German Aerospace Centre (DLR) and the DFG research training group 722.

References:
[1] Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. (1973), Monitoring the vernal advancement and retrogradation 

(green wave effect) of natural vegetation, Prog. Rep. RSC 1978-1, Remote Sensing Center, Texas A&M Univ.. 
[2] Trishchenko, A. P., Cihlar, J. and Li, Z. (2002), Effects of spectral response function on surface reflectance and NDVI 

measured with moderate resolution satellite sensors. Remote Sensing of Environment, 81, 1-18.
[3] Steven, M.D., Malthus, T.J., Baret, F., Xu, H. and Chopping, M. J. (2003), Intercalibration of vegetation indices from different 

sensor systems. Remote Sensing of Environment, 88, 412-422.
[4] Miura , T., Huete, A. and Yoshioka, H. (2006), An empirical investigation of cross-sensor relationships of NDVI and red/near-

infrared reflectance using EO-1 Hyperion data. Remote Sensing of Environment, 100, 223-236.
[5] van Leeuwen, W.J.D., Orr, B.J., Marsh, S.E. and Herrmann, S.M. (2006), Multi -sensor NDVI data continuity: Uncertainties and 

implications for vegetation monitoring applications. Remote Sensing of Environment, 100, 67-81.
[6] Franke, J. and Menz, G. (2004), Sensor intercalibration- adjustment of MODISNDVI to AVHRR NDVI data. International 

Geoscience and Remote Sensing Symposia.
[7] Franke, J., Heinzel, V. and Menz, G. (2006), Assessment of NDVI-differences caused by sensor-specific relative spectral 

response functions. International Geoscience and Remote Sensing Symposia.
[8] Teilet, P.M., Barker, J.L., Markham, B.L., Irish, R.R., Fedosejevs, G. and Storey, J.C. (2001), Radiometric cross-calibration of 

the landsat-7 ETM+ and landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78, 39-
54.

[9[ Heinzel, V., Franke, J. and Menz, G. (2006), Assessment of cross-sensor NDVI-variations caused by spectral band 
characteristics. Proceedings SPIE Vol. 5980, SPIE Remote Sensing.

Authors:
Dipl. Geogr. Vanessa Heinzel
Dipl. Geogr. Jonas Franke
Prof. Dr. Gunter Menz
ZFL- Center for Remote Sensing of Land Surfaces; Walter-Flex-Str. 3
53113, Bonn, Germany
Phone: +49228-734941
Fax: +49228-736857
E-mail: vheinzel@uni-bonn.de

292292292




