6 research outputs found

    Microfluidic device for drug delivery

    Get PDF
    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual

    Micro-Fluidic Device for Drug Delivery

    Get PDF
    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual

    Ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization,

    No full text
    We present a method for the ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization, requiring less than 5 min from design to prototype. Microfluidic device fabrication is demonstrated in a universal plastic or glass cartridge. The method consists of the following steps: introduction of liquid prepolymer into the cartridge, UV exposure through a mask to define the channel geometry, removal of unpolymerized prepolymer, and a final rinse. Rapidly fabricated masters for polydimethylsiloxane micromolding are also demonstrated. The master making process is compared to SU-8 50 photoresist processes. Press-on connectors are developed and demonstrated. All materials used are commercially available and low cost. An extension of these methods (mix and match) is presented that allows for maximal design flexibility and integration with a variety of existing fluidic geometries, components, and processes

    Porous Silicon Gradient Refractive Index Micro-Optics

    No full text
    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations
    corecore