200 research outputs found
Does autonomic neuropathy play a role in erythropoietin regulation in non-proteinuric Type 2 diabetic patients?
Aims Erythropoietin (EPO)-deficient anaemia has been described in Type 1 diabetic patients with both severe autonomic neuropathy (AN) and proteinuria. This study was aimed at distinguishing between the effects of AN and nephropathy on haemoglobin and EPO levels in Type 2 diabetic patients at an early stage of diabetic nephropathy. Methods In 64 Type 2 diabetic patients (age 52 +/- 10 years, duration 10 +/- 9 years) without overt nephropathy and other causes of anaemia or EPO deficit, we assessed cardiovascular tests of AN, 24-h blood pressure (BP) monitoring, urinary albumin excretion rate (UAE), a full blood count, and serum EPO. Results Although the Type 2 diabetic patients with AN did not show differences in haemoglobin and EPO when compared with patients without AN, the presence of haemoglobin < 13 g/dl was associated with the presence of AN (chi(2)= 3.9, P < 0.05) and of postural hypotension (chi(2)= 7.8, P < 0.05). In a multiple regression analysis including as independent variables gender, body mass index, duration of diabetes, smoking, creatinine, 24-h UAE, 24-h diastolic BP, ferritin, erythrocyte sedimentation rate, and autonomic score, we found that the only variables independently related to haematocrit were autonomic score, ferritin and erythrocyte sedimentation rate. Finally, the physiological inverse relationship between EPO and haemoglobin present in a control group of 42 non-diabetic non-anaemic subjects was completely lost in Type 2 diabetic patients. The slopes of the regression lines between EPO and haemoglobin of the control subjects and the Type 2 diabetic patients were significantly different (t = 14.4, P < 0.0001). Conclusion This study documents an early abnormality of EPO regulation in Type 2 diabetes before clinical nephropathy and points to a contributory role of AN in EPO dysregulation
Fatal pulmonary hypertension and right-sided congestive heart failure in a kitten infected with Aelurostrongylus abstrusus
Aelurostrongylus abstrusus is considered the most important respiratory nematode of domestic cats worldwide. This parasite inhabits the alveoli, alveolar ducts, and bronchioles and causes a subacute to chronic respiratory clinical disease. Clinical signs may occur in domestic cats of any age, though they aremore oftendescribedin young animals. Physical examination, echocardiography, thoracic radiography, pulmonary and cardiac pathological findings, classical, and molecular parasitological analysis of a six-month-old kitten referred at the Veterinary Teaching Hospital of the University of Pisa (Italy) led to a diagnosis of parasitic bronchopneumonia caused by A. abstrusus, which was complicated by severe pulmonary hypertension (PH) and right-sided congestive heart failure (R-CHF) that caused the death of the animal. Cases of reversible PH associated with A. abstrusus infection have been seldom reported in cats. This is the first report of fatal PH and R-CHF in a kitten with clinical aelurostrongylosis
Predictors of Mortality and Cardiovascular Outcome at 6 Months after Hospitalization for COVID-19
Clinical outcome data of patients discharged after Coronavirus disease 2019 (COVID-19) are limited and no study has evaluated predictors of cardiovascular prognosis in this setting. Our aim was to assess short-term mortality and cardiovascular outcome after hospitalization for COVID-19. A prospective cohort of 296 consecutive patients discharged after COVID-19 from two Italian institutions during the first wave of the pandemic and followed up to 6 months was included. The primary endpoint was all-cause mortality. The co-primary endpoint was the incidence of the composite outcome of major adverse cardiac and cerebrovascular events (MACCE: cardiovascular death, myocardial infarction, stroke, pulmonary embolism, acute heart failure, or hospitalization for cardiovascular causes). The mean follow-up duration was 6 ± 2 months. The incidence of all-cause death was 4.7%. At multivariate analysis, age was the only independent predictor of mortality (aHR 1.08, 95% CI 1.01–1.16). MACCE occurred in 7.2% of patients. After adjustment, female sex (aHR 2.6, 95% CI 1.05–6.52), in-hospital acute heart failure during index hospitalization (aHR 3.45, 95% CI 1.19–10), and prevalent atrial fibrillation (aHR 3.05, 95% CI 1.13–8.24) significantly predicted the incident risk of MACCE. These findings may help to identify patients for whom a closer and more accurate surveillance after discharge for COVID-19 should be considered
2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA
Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication
Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial
IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved
Change over time of COVID-19 hospital presentation in Northern Italy
none40After the first autochthonous case described on February 19, also in
Italy the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARSCoV-2) infection rapidly circulated, mainly in the Northern regions of
the country. The earliest reports on Coronavirus disease-19 (COVID-19)
have described worldwide a high prevalence of severe respiratory illness [1]. A suggestive feature of COVID-19 has been a rapid progression
of the respiratory impairment, leading to acute respiratory distress
syndrome (ARDS) and often requiring ventilation support [2]. To date,
whether clinical features at hospital presentation and outcome of
COVID-19 have changed over the outbreak course is unknown. We
explored this issue in a multicenter cohort of patients hospitalized for
COVID-19 in Northern Italy.mixedPatti G.; Mennuni M.; Della Corte F.; Spinoni E.; Sainaghi P. P.; COVID-UPO Clinical Team; Azzolina D; Hayden E; Rognon A; Grisafi L; Colombo C; Lio V; Pirisi M; Vaschetto R; Aimaretti G; Krengli M; Avanzi GC; Balbo PE; Capponi A; Castello LM; Bellan M; Malerba M; Garavelli PL; Zeppegno P; Savoia P; Chichino G; Olivieri C; Re R; Maconi A; Comi C; Roveta A; Bertolotti M; Carriero A; Betti M; Mussa M; Borrè S; Cantaluppi V; Cantello R; Bobbio F; GavellI F.Patti, G.; Mennuni, M.; Della Corte, F.; Spinoni, E.; Sainaghi, P. P.; COVID-UPO Clinical, Team; Azzolina, D; Hayden, E; Rognon, A; Grisafi, L; Colombo, C; Lio, V; Pirisi, M; Vaschetto, R; Aimaretti, G; Krengli, M; Avanzi, Gc; Balbo, Pe; Capponi, A; Castello, Lm; Bellan, M; Malerba, M; Garavelli, Pl; Zeppegno, P; Savoia, P; Chichino, G; Olivieri, C; Re, R; Maconi, A; Comi, C; Roveta, A; Bertolotti, M; Carriero, A; Betti, M; Mussa, M; Borrè, S; Cantaluppi, V; Cantello, R; Bobbio, F; Gavelli, F
Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria
The genetic information in mammalian mitochondrial DNA is densely packed; there are no introns and only one sizeable noncoding, or control, region containing key cis-elements for its replication and expression. Many molecules of mitochondrial DNA bear a third strand of DNA, known as “7S DNA,” which forms a displacement (D-) loop in the control region. Here we show that many other molecules contain RNA as a third strand. The RNA of these R-loops maps to the control region of the mitochondrial DNA and is complementary to 7S DNA. Ribonuclease H1 is essential for mitochondrial DNA replication; it degrades RNA hybridized to DNA, so the R-loop is a potential substrate. In cells with a pathological variant of ribonuclease H1 associated with mitochondrial disease, R-loops are of low abundance, and there is mitochondrial DNA aggregation. These findings implicate ribonuclease H1 and RNA in the physical segregation of mitochondrial DNA, perturbation of which represents a previously unidentified disease mechanism
- …