130 research outputs found

    Positive allosteric modulation as a potential therapeutic strategy in anti-NMDA receptor encephalitis

    Get PDF
    N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterol-mimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation of NMDAR function explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.SIGNIFICANCE STATEMENTAnti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is increasingly recognized as an important cause of sudden-onset psychosis and other neuropsychiatric symptoms. Current treatment leaves unmet medical need. Here we demonstrate cellular evidence that newly identified positive allosteric modulators of NMDAR function may be a viable therapeutic strategy.</jats:p

    Comparative Effects of Heterologous TRPV1 and TRPM8 Expression in Rat Hippocampal Neurons

    Get PDF
    Heterologous channel expression can be used to control activity in select neuronal populations, thus expanding the tools available to modern neuroscience. However, the secondary effects of exogenous channel expression are often left unexplored. We expressed two transient receptor potential (TRP) channel family members, TRPV1 and TRPM8, in cultured hippocampal neurons. We compared functional expression levels and secondary effects of channel expression and activation on neuronal survival and signaling. We found that activation of both channels with appropriate agonist caused large depolarizing currents in voltage-clamped hippocampal neurons, exceeding the amplitude responses to a calibrating 30 mM KCl stimulation. Both TRPV1 and TRPM8 currents were reduced but not eliminated by 4 hr incubation in saturating agonist concentration. In the case of TRPV1, but not TRPM8, prolonged agonist exposure caused strong calcium-dependent toxicity. In addition, TRPV1 expression depressed synaptic transmission dramatically without overt signs of toxicity, possibly due to low-level TRPV1 activation in the absence of exogenous agonist application. Despite evidence of expression at presynaptic sites, in addition to somatodendritic sites, TRPM8 expression alone exhibited no effects on synaptic transmission. Therefore, by a number of criteria, TRPM8 proved the superior choice for control over neuronal membrane potential. This study also highlights the need to explore potential secondary effects of long-term expression and activation of heterologously introduced channels

    Kinetic and Structural Determinants for GABA-A Receptor Potentiation by Neuroactive Steroids

    Get PDF
    Endogenous neurosteroids and synthetic neuroactive steroid analogs are among the most potent and efficacious potentiators of the mammalian GABA-A receptor. The compounds interact with one or more sites on the receptor leading to an increase in the channel open probability through a set of changes in the open and closed time distributions. The endogenous neurosteroid allopregnanolone potentiates the Ī±1Ī²2Ī³2L GABA-A receptor by enhancing the mean duration and prevalence of the longest-lived open time component and by reducing the prevalence of the longest-lived intracluster closed time component. Thus the channel mean open time is increased and the mean closed time duration is decreased, resulting in potentiation of channel function. Some of the other previously characterized neurosteroids and steroid analogs act through similar mechanisms while others affect a subset of these parameters. The steroids modulate the GABA-A receptor through interactions with the membrane-spanning region of the receptor. However, the number of binding sites that mediate the actions of steroids is unclear. We discuss data supporting the notions of a single site vs. multiple sites mediating the potentiating actions of steroids

    Excitotoxicity Triggered by Neurobasal Culture Medium

    Get PDF
    Neurobasal defined culture medium has been optimized for survival of rat embryonic hippocampal neurons and is now widely used for many types of primary neuronal cell culture. Therefore, we were surprised that routine medium exchange with serum- and supplement-free Neurobasal killed as many as 50% of postnatal hippocampal neurons after a 4 h exposure at day in vitro 12ā€“15. Minimal Essential Medium (MEM), in contrast, produced no significant toxicity. Detectable Neurobasal-induced neuronal death occurred with as little as 5 min exposure, measured 24 h later. D-2-Amino-5-phosphonovalerate (D-APV) completely prevented Neurobasal toxicity, implicating direct or indirect N-methyl-D-aspartate (NMDA) receptor-mediated neuronal excitotoxicity. Whole-cell recordings revealed that Neurobasal but not MEM directly activated D-APV-sensitive currents similar in amplitude to those gated by 1 ĀµM glutamate. We hypothesized that L-cysteine likely mediates the excitotoxic effects of Neurobasal incubation. Although the original published formulation of Neurobasal contained only 10 ĀµM L-cysteine, commercial recipes contain 260 ĀµM, a concentration in the range reported to activate NMDA receptors. Consistent with our hypothesis, 260 ĀµM L-cysteine in bicarbonate-buffered saline gated NMDA receptor currents and produced toxicity equivalent to Neurobasal. Although NMDA receptor-mediated depolarization and Ca2+ influx may support survival of young neurons, NMDA receptor agonist effects on development and survival should be considered when employing Neurobasal culture medium

    The major brain cholesterol metabolite 24(s)-hydroxycholesterol is a potent allosteric modulator of N-methyl-d-aspartate receptors

    Get PDF
    N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABA(A) receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ā‰¤10 Ī¼m. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse ā€” the electron-dense synaptic ribbon or synaptic body ā€” has been recognized for decades, dissection of the synapseā€™s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    A Synaptic Mechanism for Temporal Filtering of Visual Signals

    Get PDF
    The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties

    New technologies for examining neuronal ensembles in drug addiction and fear

    Get PDF
    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approachesā€”Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats ā€” that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools ā€” c-fos-tTA mice and inactivation of CREB-overexpressing neurons ā€” that have been used to study the role of neuronal ensembles in conditioned fear
    • ā€¦
    corecore