3 research outputs found
Cdte And Cdse Quantum Dots Cytotoxicity: A Comparative Study On Microorganisms
Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II-VI or III-V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. © 2011 by the authors; licensee MDPI, Basel, Switzerland.11121166411678Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots (1996) Science, 271, pp. 933-937Weller, H., Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures (1998) Curr. Opin. Colloid Interface Sci, 3, pp. 194-199Almeida, D.B., (2008) Pontos Quânticos Coloidais De Semicondutores II-VI Encapados Com SiO2, , M.S. Thesis, Universidade Estadual de Campinas, Campinas, SP, Brazil, AprilWeng, J., Song, X., Li, L., Qian, H., Chen, K., Xu, X., Cao, C., Ren, J., Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging (2006) Talanta, 70, pp. 397-402Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T., Quantum dots versus organic dyes as fluorescent labels (2008) Nat. Methods, 5, pp. 763-775Rockenberger, J., Troger, L., Rogach, A.L., Tischer, M., Grundmann, M., Eychmuller, A., Weller, H., The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals (1998) J. Chem. Phys, 108, pp. 7807-7815Borchert, H., Talapin, D.V., Gaponik, N., McGinley, C., Adam, S., Lobo, A., Möller, T., Weller, H., Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS (2003) J. Phys. Chem. B, 107, pp. 9662-9668Tokumasu, F., Fairhurst, R.M., Ostera, G.R., Brittain, N.J., Hwang, J., Wellems, T.E., Dvorak, J.A., Band 3 modifications in Plasmodium falciparum-Infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots (2005) J. Cell Sci, 118, pp. 1091-1098Farias, P.M.A., Santos, B.S., Menezes, F.D., Ferreira, R., Barjas-Castro, M.L., Castro, V., Lima, P.R.M., Cesar, C.L., Investigation of red blood cell antigens with highly fluorescent and stable semiconductor quantum dots (2005) J. Biomed. Opt, , doi: 10.1117/1.1993257Jaiswall, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M., Long-term multiple color imaging of live cells using quantum dot bioconjugates (2003) Nat. Biotechnol, 21, pp. 47-51Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., Semiconductor nanocrystals as fluorescent biological labels (1998) Science, 281, pp. 2013-2016Chan, W.C., Nie, S., Quantun dot bioconjugate for ultrasensitive nonisotopic detection (1998) Science, 281, pp. 2016-2018Farias, P.M.A., Santos, B.S., Menezes, F.D., Brasil, J.R.A.G., Ferreira, R., Motta, M.A., Castro-Neto, A.G., César, C.L., Highly fluorescent semiconductor core-shell CdTe-CdS nanocrystals for monitoring living yeast cell activity (2007) Appl. Phys. A, 89, pp. 957-961Chaves, C.R., (2006) Síntese E Caracterização De Nanopartículas De Sulfeto De Cádmio: Aplicações Biomédicas, , M.S. Thesis, Universidade Federal de Pernambuco, Recife, PE, Brazil, SeptemberLee, L.Y., Ong, S.L., Hu, J.Y., Ng, W.J., Feng, Y., Tan, X., Wong, S.W., Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum (2004) Appl. Environ. Microbiol, 70, pp. 5732-5736Mello, C.B., Azambuja, P., Garcia, E.S., Ratcliffe, N.A., Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus (1996) Exp. Parasitol, 82, pp. 112-121Araújo, C.A.C., Mello, C.B., Jansen, A.M., Trypanosoma cruzi I and Trypanosoma cruzi II: Recognition of sugar structures by Arachis hypogaea (peanut agglutinin) lectin (2002) J. Parasitol, 88, pp. 582-586Ferrari, B.C., Veal, D., Analysis-only detection of Giardia by combining immunomagnetic separation and two-color flow cytometry (2003) Cytometry A, 51, pp. 79-86Goldman, E.R., Anderson, G.P., Tran, P.T., Mattoussi, H., Charles, P.T., Mauro, J.M., Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays (2002) Anal. Chem, 74, pp. 841-847Goldman, E.R., Mattoussi, H., Anderson, G.P., Medintz, I.L., Mauro, J.M., Fluoroimmunoassays using antibody-conjugated quantum dots methods (2005) Mol. Biol, 303, pp. 19-34Sweeney, E., Ward, T.H., Gray, N., Womack, C., Jayson, G., Hughes, A., Dive, C., Byers, R., Quantitative multiplexed quantum dots immunohistochemistry (2008) Biochem. Biophys. Res. Commun, 374, pp. 181-186Feder, D., Gomes, S.A.O., de Thomaz, A.A., Almeida, D.B., Faustino, W.M., Fontes, A., Stahl, C.V., Cesar, C.L., In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi & Rhodnius prolixus interaction using confocal microscopy (2009) Parasitol. Res, 106, pp. 85-93Zhang, W., Zhang, L., Cheng, Y., Hui, Z., Zhang, X., Xie, Y., Qian, Y., Synthesis of nanocrystalline lead chalcogenides PbE (E = S, Se, or Te) from alkaline aqueous solutions (2000) Mater. Res. Bull, 35, pp. 2009-2015Gaponik, N., Dmitri, V.T., Rogach, A.L., Hoppe, K., Shevchenko, E.V., Kornowski, A., Eychmüller, A., Weller, H., Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes (2002) J. Phys. Chem. B, 106, pp. 7177-7185Khatchadourian, R., Alexia, B.A., Samuel, J.C., Heyes, C.D., Wiseman, P.W., Jay, L., Nadeau, J.L., Fluorescence intensity and intermittency as tools for following dopamine bioconjugate processing in living cells (2007) J. Biomed. Biotechnol, , doi: 10.1155/2007/70145Geho, D., Lahar, N., Gurnani, P., Huebschman, M., Herrmann, P., Espina, V., Shi, A., Rosenblatt, K.P., Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays (2005) Bioconjugate Chem, 16, pp. 559-566Chaves, C.R., Fontes, A., Farias, P.M.A., Santos, B.S., Menezes, F.D., Ferreira, R., Cesar, C.L., Figueiredo, R.C.B.Q., Application of core-shell pegylated CdS/Cd(OH)2 quantum dots as biolabels of Trypanosoma cruzi parasites (2008) Appl. Surf. Sci, 255, pp. 728-730Marquis, B.J., Love, S.A., Braun, K.L., Haynes, C.L., Analytical methods to assess nanoparticle toxicity (2009) Analyst, 134, pp. 425-439Kitakura, S., Vanneste, S., Robert, S., Löfke, C., Teichmann, T., Tanaka, H., Friml, J., Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis (2011) Plant Cell, 23, pp. 1920-1931Conner, S.D., Schimd, S.L., Regulated portals of entry into the cell (2003) Nature, 422, pp. 37-44Luccardinni, C., Yakovlev, A., Gaillard, S., Van't hoff, M., Alberola, A.P., Mallet, J.M., Parak, W.J., Oheim, M., Getting across the plasma membrane and beyond: Intracellular uses of colloidal semiconductor nanocrystals (2007) J. Biomed. Biotechnol, , doi: 10.1155/2007/68963Chithrani, B.D., Chan, W.C.W., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes (2007) Nano Lett, 7, pp. 1542-1550Jiang, D., Wang, L., Jiang, W., Quantitative detection of antibody based on single-molecule counting by total internal reflection fluorescence microscopy with quantum dot labeling (2009) Anal. Chim. Acta, 634, pp. 83-88Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing (2005) Nat. Mater, 4, pp. 435-446Anas, A., Okuda, T., Kawashima, N., Nakayama, K., Itoh, T., Mitsuru, B.V., Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells (2009) ACS Nano, 3, pp. 2419-2429Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y., Ohta, T., Yasuhara, M., Yamamoto, K., Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification (2004) Nano Lett, 4, pp. 2163-2169Duan, H.W., Nie, S.M., Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings (2007) J. Am. Chem. Soc, 129, pp. 3333-3338Yezhelyev, M.V., Qi, L.F., O'Regan, R.M., Nie, S., Gao, X.H., Proton-sponge coated quantum dots for SiRNA delivery and intracellular imaging (2008) J. Am. Chem. Soc, 130, pp. 9006-9012Jiang, X., Rocker, C., Hafner, M., Brandholt, S., Dorlich, R.M., Nienhaus, G.U., Endo-and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells (2010) ACS Nano, 4, pp. 6787-6797Lonhienne, T.G.A., Sagulenko, E., Webb, R.I., Lee, K.C., Franke, J., Devos, D.P., Nouwens, A., Fuerst, J.A., Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 12883-12888Demchick, P., Koch, A.L., The permeability of the wall fabric of Escherichia coli and Bacillus subtilis (1996) J. Bacteriol, 178, pp. 768-773Dabbousi, B.O.J., Rodriguez-Viejo, F.V., Mikulec, J.R., Heine, H., Mattoussi, R., Ober, K.F., Jensen, K.F., Bawendi, M.G., CdSe ZnS coreshell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites (1997) J. Phys. Chem, B101, pp. 9463-9475Kloepfer, J.A., Mielke, R.E., Nadeau, J.L., Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms (2005) Appl. Environ. Microbiol, 71, pp. 2548-2557Kaksonen, M., Toret, C.P., Drubin, D.G., Harnessing actin dynamics for clathrin-mediated endocytosis (2006) Nat. Rev, 7, pp. 404-414Toret, C.P., Drubin, D.G., The budding yeast endocytic pathway (2006) J. Cell Sci, 119, pp. 4585-4587Galletta, B.J., Cooper, J.A., Actin and endocytosis: Mechanisms and phylogeny (2009) Curr. Opin. Cell Biol, 21, pp. 20-27Shaw, A.J., Szövényi, P., Shaw, B., Bryophyte diversity and evolution: Windows into the early evolution of land plants (2011) Am. J. Bot, 98, pp. 352-369Wang, P., Shen, G., The endocytic adaptor proteins of pathogenic fungi: Charting new and familiar pathways (2011) Med. Mycol, 49, pp. 449-457Santos, B.S., Farias, P.M.A., Menezes, F.D., Ferreira, R., Giorgio, S., Bosetto, M.C., Mariano, E.A., Cesar, C.L., Molecular differentiation of Leishmania protozoarium using CdS quantum dots as biolabels (2006) Proc. SPIE, , doi: 10.1117/12.646912Joo, K.I., Fang, Y., Liu, Y., Xiao, L., Gu, Z., Tai, A., Lee, C.L., Wang, P., Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates (2011) ACS Nano, 5, pp. 3523-3535Hao, X., Shang, X., Wu, J., Shan, Y., Cai, M., Jiang, J., Huang, Z., Wang, H., Single-particle tracking of hepatitis B virus-like vesicle entry into cells (2011) Small, 7, pp. 1212-1218Liu, H., Liu, Y., Liu, S., Pang, D.W., Xiao, G., Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus (2011) J. Virol, 85, pp. 6252-6262Duszenko, M., Ivanov, I.E., Ferguson, M.A., Plesken, H., Cross, G.A., Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei (1988) J. Cell Biol, 106, pp. 77-86Morgan, G.W., Allen, C.L., Jeffries, T.R., Hollinshead, M., Field, M.C., Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei (2001) J. Cell Sci, 114, pp. 2605-2615Field, M.C., Carrington, M., Intracellular membrane transport systems in Trypanosoma brucei (2004) Traffic, 5, pp. 905-913Derfus, A.M., Chan, W.C.W., Bhatia, S.N., Intracellular delivery of quantum dots for live cell labeling and organelle tracking (2004) Adv. Mater, 16, pp. 961-966Parak, W.J., Pellegrino, T., Plank, C., Labelling of cells with quantum dots (2005) Nanotechology, 16, pp. R9-R21Pelley, J.L., Daar, A.S., Saner, M.A., State of academic knowledge on toxicity and biological fate of quantum dots (2009) Toxicol. Sci, 112, pp. 276-296Dumas, E.M., Ozenne, V., Mielke, R.E., Nadeau, J.L., Toxicity of CdTe quantum dots in bacterial strains (2009) IEEE Trans. Nanobiosci, 8, pp. 58-64Wang, X., Qu, L., Zhang, J., Peng, X., Xiao, M., Surface-related emission in highly luminescent CdSe quantum dots (2003) Nano Lett, 3, pp. 1103-1106Ma, J., Chen, J., Guo, J., Wang, C.C., Yang, W.L., Xu, L., Wang, P.N., Photostability of thiol-capped CdTe quantum dots in living cells (2006) The Effect of Photo-oxidation. Nano Technol, 17, pp. 2083-2089Aldana, J., Wang, Y.A., Peng, X., Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols (2001) J. Am. Chem. Soc, 123, pp. 8844-8850Samia, A.C.S., Chen, X., Burda, C., Semiconductor quantum dots for photodynamic therapy (2003) J. Am. Chem. Soc, 125, pp. 15736-15737Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz, J.A., Gaub, H.E., Stölzle, S., Parak, W.J., Citotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles (2005) Nano Lett, 5, pp. 331-338Vicenti, M., We, E.T., Malagoli, C., Bergomi, M., Vivoli, G., Adverse health effects of selenium in humans (2001) Rev. Environ. Health, 16, pp. 233-251Bertin, G., Averbeck, D., Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review) (2006) Biochimie, 88, pp. 1549-1559Parak, W.J., Gerion, D., Zanchet, D., Woerz, S.A., Pellegrino, T., Micheel, C., Williams, S.C., Alivisatos, P.A., Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots (2002) Chem. Mater, 14, pp. 2113-2119Hardman, R., A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ (2006) Health Perspect, 114, pp. 165-172Lovric, J., Bazzi, H.S., Cuie, Y., Fortin, G.R.A., Winnik, F.M., Maysinger, D., Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots (2005) J. Mol. Med, 83, pp. 377-385Stahl, C.V., Almeida, D.B., de Thomaz, A.A., Menna-Barreto, R.F.S., Santos-Mallet, J.R., César, C.L., Gomes, S.A.O., Feder, D., Studying nanotoxic effects of CdTe Quantum dots in Trypanosoma cruzi. Mem. Inst (2011) Oswaldo Cruz, 106, pp. 158-165Wang, L., Zheng, H., Long, Y., Gao, M., Hao, J., Du, J., Mao, X., Zhou, D., Rapid determination of the toxicity of quantum dots with luminous bacteria (2010) J. Hazard. Mat, 177, pp. 1134-1137Dumas, E., Gao, G., Suffen, D., Bradforth, S.E., Dimitrijevic, N.M., Nadeau, J.L., Interfacial charge transfer between CdTe quantum dots and Gram negative versus Gram positive bacteria (2010) Environ. Sci. Technol, 44, pp. 1464-1470Fu, G., Vary, P.S., Lin, C.T., Anatase TiO2 nanocomposites for antimicrobial coatings (2005) J. Phys. Chem. B, 109, pp. 8889-8898Rincon, A.G., Pulgarin, C., Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed Escherichia coli and Bacillus subtilis and the bacterial community present wastewater (2005) Catal. Today, 101, pp. 331-334Lyon, D.Y., Brunet, L., Hinkal, G.W., Wiersner, M.R., Alvarez, P.J., Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage (2008) Nano Lett, 8, pp. 1539-1543Mashino, T., Usui, N., Okuda, K., Hirota, P., Mochizuki, M., Respiratory chain inhibition by fullerene derivatives: Hydrogen peroxide production caused by fullerene derivatives and a respiratory chains system (2003) Bioorg. Med. Chem, 11, pp. 1433-1438Silver, S., Bacterial resistances to toxic metal ions-A review (1996) Gene, 179, pp. 9-19Park, S., Chibli, H., Wong, J., Nadeau, J.L., Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates (2011) Nanotechnology, 22, pp. 185101-185110Cho, S.J., Maysinger, D., Jain, M., Röder, B., Hackbarth, S., Winnik, F.M., Long-term exposure to CdTe quantum dots causes functional impairments in live cells (2007) Langmuir, 23, pp. 1974-1980Tang, M., Xing, T., Zeng, J., Wang, H., Li, C., Yin, S., Yan, D., Ruan, D.Y., Unmodified CdSe quantum dots induce elevation of cytoplasmatic calcium levels and impairment of functional properties of sodium channels in rat primary culture hippocampal neurons (2008) Environ. Health Perspect, 116, pp. 915-922Kim, Y.G., Moon, S., Kuritzkes, D.R., Demirci, U., Quantum dot-based HIV capture and imaging in a microfluidic channel (2009) Biosens. Bioelectron, 25, pp. 253-258Rawsthorne, H., Phister, T.G., Jaykus, L.A., Development of a fluorescent in situ method for visualization of enteric viruses (2009) Appl. Environ. Microbiol, 75, pp. 7822-7827Schneider, R., Wolpert, C., Guilloteau, H., Balan, L., Lambert, J., Merlin, C., The exposure of bacteria to CdTe-core quantum dots: The importance of surface chemistry on cytotoxicity (2009) Nanotechnology, , doi: 10.1088/0957-4484/20/22/225101Zahavy, E., Heleg-Shabtai, V., Zafrani, Y., Marciano, D., Yitzhaki, S., Application of fluorescent nanocrystals (Q-dots) for the detection of pathogenic bacteria by flow-cytometry (2010) J. Fluoresc, 20, pp. 389-39