20 research outputs found

    Energetic outer radiation belt electron precipitation during recurrent solar activity

    Get PDF
    Transmissions from three U.S. VLF (very low frequency) transmitters were received at Churchill, Canada, during an event study in May to November, 2007. This period spans four cycles of recurrent geomagnetic activity spaced similar to 27 days apart, with daily Sigma Kp reaching similar to 30 at the peaks of the disturbances. The difference in the amplitude of the signals received during the day and during the night varied systematically with geomagnetic activity, and was used here as a proxy for ionization changes caused by energetic electron precipitation. For the most intense of the recurrent geomagnetic storms there was evidence of electron precipitation from 3 300 keV and similar to 1 MeV trapped electrons, and also consistent with the daily average ULF (ultralow frequency) Pc1-2 power (L = 3.9) from Lucky Lake, Canada, which was elevated during the similar to 1 MeV electron precipitation period. This suggests that Pc1-2 waves may play a role in outer radiation belt loss processes during this interval. We show that the > 300 keV trapped electron flux from POES is a reasonable proxy for electron precipitation during recurrent high-speed solar wind streams, although it did not describe all of the variability that occurred. While energetic electron precipitation can be described through a proxy such as Kp or Dst, careful incorporation of time delays for different electron energies must be included. Dst was found to be the most accurate proxy for electron precipitation during the weak recurrent-activity period studied

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Magnetospheric ULF waves: a review

    No full text
    Ultra-low frequency (ULF; approx. 1 mHz ≀ ∫ ≀ 10 Hz) MHD plasma waves are readily recorded throughout the Earth’s magnetosphere and on the ground. Generated by a variety of instabilities, ULF waves transport and couple energy throughout the system, and may play important roles in the energization and loss of radiation belt particles. ULF waves also provide a convenient probe and diagnostic monitor of the magnetosphere. The availability of multipoint measurements from spacecraft, ionospheric sounders and ground magnetometer arrays and the increasing sophistication of modeling tools have stimulated much recent progress in this area. Nevertheless, fundamental questions remain regarding the generation, propagation and consequences of these waves. This chapter reviews recent developments in these areas

    Magnetoseismology: ground-based remote sensing of Earth's magnetosphere

    No full text
    This book provides a comprehensive account of magnetoseismology - the tool to monitor space weather. Written by researcher on the forefront of this field, it conveys the physics behind the phenomena and the methods to detect and investigate them, the relevance to communication, power supply and many other critical systems. In addition, it provides computational codes for analysis and evaluation

    Quarter-wave modes of standing Alfvén waves detected by cross-phase analysis

    No full text
    We have examined the diurnal variation of the local field line eigenfrequency at L ~ 2.6 using cross-phase analysis of Sub-Auroral Magnetometer Network and Magnetometers Along the Eastern Atlantic Seaboard for Undergraduate Research and Education ground magnetometer array data. On several days the eigenfrequency was remarkably low near the dawn terminator, when one end of the field line was sunlit and the other end was in darkness. Later in the morning the eigenfrequency gradually increased to the normal daytime value. This type of diurnal eigenfrequency variation was found in both European and American meridians and in several seasons (March, June, and December). By modeling this situation we show that the extraordinarily low eigenfrequency events appeared when the ionospheric Pedersen conductance was strongly asymmetric between both ends of the field line, leading to the formation of quarter-wavelength-mode standing waves that revert to half-wavelength modes as the dawn terminator passes both conjugate points. Ground-based magnetometer measurements of local toroidal field line eigenfrequencies are often inverted to infer plasma mass density in the magnetosphere by assuming half-wavelength-mode standing field line oscillations. However, the mode structure and hence field line eigenfrequency also depend on the ionospheric conductance. In particular, we find that there is a threshold of interhemispheric conductance ratio for the quarter-wavelength mode to be established. Our results therefore show that cross-phase techniques can detect quarter-wavelength-mode waves, where the inferred mass density would be overestimated

    Multipoint visualization of ULF oscillations using the Super Dual Auroral Radar Network

    No full text
    We present a technique for the automatic detection of Pc5 (150 s to 600 s period) ultralow frequency (ULF) pulsations in ground and ionospheric backscatter from the Super Dual Auroral Radar Network (SuperDARN). This new technique enables rapid identification and visualization of ULF oscillations over the very wide geographical coverage of SuperDARN. The technique detects ULF oscillations using the Lomb-Scargle periodogram method, which provides a natural test for periodic behavior against the null hypothesis of a pure noise distribution. This does not require any interpolation across data gaps and is thus appropriate for SuperDARN data. We demonstrate the application of the technique to SuperDARN data for March 2014 and find that Pc5 pulsations are frequently observed by multiple radars simultaneously. A preliminary investigation using data from all Northern Hemisphere SuperDARN radars indicates that Pc5 pulsation activity occurs most often on the nightside of the magnetosphere, with a mean frequency of about 2 mHz. Key PointsTechnique for automatic detection of ULF oscillations in SuperDARN dataRapid visualization of the presence and spatial extent of Pc5 pulsation activityPc5 ULF oscillations observed most often on the nightside of the magnetospher

    Visualization of ULF waves in SuperDARN data

    No full text
    Measurements of ionospheric E x B drifts obtained with HF radars from the SuperDARN (Super Dual Auroral Radar) Network sometimes show signatures of ULF (few mHz) waves. We present a new data display technique that facilitates the detection of ULF waves in both ground and sea scatter returns. Statistical study of high time resolution data from the SuperDARN TIGER radar in Tasmania, Australia, revealed that ULF wave signatures occur on an everyday basis with ground scatter accounting for about 60% of wave events. About half of these events exhibit high coherence across large spatial distances and are associated with ULF pulsations recorded by a ground magnetometer. These results show that SuperDARN radars may be used to routinely monitor ULF waves in the high-latitude ionosphere
    corecore