409 research outputs found

    Temporal-mode continuous-variable cluster states using linear optics

    Get PDF
    I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett. 104, 250503], including finite requirements for coherence and stability even as the computation length increases indefinitely, with none of the difficulty of inline squeezing. The extensibility stems from a construction based on Gaussian projected entangled pair states (GPEPS). The potential for use of this design within a fully fault tolerant model is discussed.Comment: 9 pages, 19 color figure

    One-Way Quantum Computing in the Optical Frequency Comb

    Get PDF
    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a radically new approach: a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.Comment: v2: changed author order; 4 pages, 3 figures; supplemental movie available at http://faculty.virginia.edu/quantum/torus.mo

    Arbitrarily Large Continuous-Variable Cluster States from a Single Quantum Nondemolition Gate

    Get PDF
    We present a compact experimental design for producing an arbitrarily large optical continuous-variable cluster state using just one single-mode vacuum squeezer and one quantum nondemolition gate. Generating the cluster state and computing with it happen simultaneously: more entangled modes become available as previous modes are measured, thereby making finite the requirements for coherence and stability even as the computation length increases indefinitely.Comment: (v2) 5 pages, 4 color figures, added brief mention of fault tolerance, version accepted for publication (note: actual published version is edited slightly for space); (v1) 4 pages, 4 color figure

    Deriving the respiratory sinus arrhythmia from the heartbeat time series using Empirical Mode Decomposition

    Full text link
    Heart rate variability (HRV) is a well-known phenomenon whose characteristics are of great clinical relevance in pathophysiologic investigations. In particular, respiration is a powerful modulator of HRV contributing to the oscillations at highest frequency. Like almost all natural phenomena, HRV is the result of many nonlinearly interacting processes; therefore any linear analysis has the potential risk of underestimating, or even missing, a great amount of information content. Recently the technique of Empirical Mode Decomposition (EMD) has been proposed as a new tool for the analysis of nonlinear and nonstationary data. We applied EMD analysis to decompose the heartbeat intervals series, derived from one electrocardiographic (ECG) signal of 13 subjects, into their components in order to identify the modes associated with breathing. After each decomposition the mode showing the highest frequency and the corresponding respiratory signal were Hilbert transformed and the instantaneous phases extracted were then compared. The results obtained indicate a synchronization of order 1:1 between the two series proving the existence of phase and frequency coupling between the component associated with breathing and the respiratory signal itself in all subjects.Comment: 12 pages, 6 figures. Will be published on "Chaos, Solitons and Fractals

    Universal Quantum Computation with Continuous-Variable Cluster States

    Get PDF
    We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.Comment: 4 pages, no figure

    Cosmological quantum entanglement

    Get PDF
    We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this transition in a rigorous way and discuss the importance of entanglement and decoherence in this process. We conclude with some prospects for further theoretical and experimental research in this area. These include extensions of current theoretical efforts, possible future observational pursuits, and experimental analogues that emulate these cosmic effects in a laboratory setting.Comment: 23 pages, 2 figures. v2 Added journal reference and minor changes to match the published versio

    Quantum Computing with Continuous-Variable Clusters

    Full text link
    Continuous-variable cluster states offer a potentially promising method of implementing a quantum computer. This paper extends and further refines theoretical foundations and protocols for experimental implementation. We give a cluster-state implementation of the cubic phase gate through photon detection, which, together with homodyne detection, facilitates universal quantum computation. In addition, we characterize the offline squeezed resources required to generate an arbitrary graph state through passive linear optics. Most significantly, we prove that there are universal states for which the offline squeezing per mode does not increase with the size of the cluster. Simple representations of continuous-variable graph states are introduced to analyze graph state transformations under measurement and the existence of universal continuous-variable resource states.Comment: 17 pages, 5 figure

    The Highly Miniaturised Radiation Monitor

    Full text link
    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3^3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108^8 cm2^{-2} s1^{-1} (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.Comment: 17 pages, 15 figure

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure

    Scaling and intermittency of brain events as a manifestation of consciousness

    Get PDF
    We discuss the critical brain hypothesis and its relationship with intermittent renewal processes displaying power-law decay in the distribution of waiting times between two consecutive renewal events. In particular, studies on complex systems in a "critical" condition show that macroscopic variables, integrating the activities of many individual functional units, undergo fluctuations with an intermittent serial structure characterized by avalanches with inverse-power-law (scale-free) distribution densities of sizes and inter-event times. This condition, which is denoted as "fractal intermittency", was found in the electroencephalograms of subjects observed during a resting state wake condition. It remained unsolved whether fractal intermittency correlates with the stream of consciousness or with a non-task-driven default mode activity, also present in non-conscious states, like deep sleep. After reviewing a method of scaling analysis of intermittent systems based of event-driven random walks, we show that during deep sleep fractal intermittency breaks down, and re-establishes during REM (Rapid Eye Movement) sleep, with essentially the same anomalous scaling of the pre-sleep wake condition. From the comparison of the pre-sleep wake, deep sleep and REM conditions we argue that the scaling features of intermittent brain events are related to the level of consciousness and, consequently, could be exploited as a possible indicator of consciousness in clinical applications
    corecore