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One-way quantum computing allows any quantum algorithm to be implemented easily using just

measurements. The difficult part is creating the universal resource, a cluster state, on which the

measurements are made. We propose a scalable method that uses a single, multimode optical parametric

oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal

for quantum computation, with quantum information encoded in the quadratures of the optical frequency

comb of the OPO.
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Introduction.—Quantum computing (QC) is a fascinat-
ing endeavor, ripe with promises of exponential speedup of
particular mathematical problems such as quantum system
simulation [1] and integer factoring [2]. Because imple-
menting QC requires exquisite control of each single quan-
tum memory unit (e.g., qubit) in a large-size register,
practical QC is therefore faced with the daunting chal-
lenges of overcoming decoherence and achieving scalabil-
ity [3]. Recently, the invention of one-way quantum
computing introduced a new paradigm for quantum infor-
mation processing [4] based on teleportation alone [5]. In
the traditional ‘‘circuit’’ QC model [6], physical quantum
systems carry quantum information and undergo controlled
unitary evolution; in the one-way QC model, quantum
information exists virtually in a cluster state [7] and is
manipulated through a sequence of local measurements.
The choice of measurement basis and the measurement
results fully determine the quantum algorithm.

The appeal of one-way QC is that it consolidates most of
the challenging work into creating the universal resource—
the cluster state—and that it only requires local measure-
ments. In addition, some one-way QC schemes admit very
high fault-tolerance thresholds [8], and experimental real-
izations with four qubits have already been achieved
[9,10]. Efficient methods of creating large-scale cluster
states are still needed, however, for practical implementa-
tion to be realistic. Here, we describe a new approach to
scalability: a ‘‘top-down’’ method to produce large
continuous-variable (CV) cluster states using a compact
experimental setup. The interest of CVs is their natural
implementation by squeezing (quantum noise reduction) in
quantum optical systems. Photons are also less prone to
decoherence than, say, atoms, due to their lower propensity
to interact with the environment. Several studies have
established the use of photonic CVs for teleportation
[11,12], QC [13], quantum error correction [14], cluster
states [15–18], and one-way QC [16].

CV cluster states from a single OPO.—Initial proposals
for constructing CV cluster states [15,16] involved inline
squeezers (seeded OPOs) [19], which are difficult to imple-
ment. A more viable method relies on the Bloch-Messiah
decomposition [20] and uses N vacuum squeezers fol-
lowed by an OðN2Þ-port interferometer [21]. Our method
improves further, requiring only a single OPO and no
interferometer [17], and provides huge scaling potential.
The OPO combines two essential elements. The first one

is an optical cavity (e.g., two facing mirrors) whose spec-
trum of resonant frequencies forms an optical frequency
comb (OFC), so called because of the equal spacing be-
tween modes. Considered as a quantum system, the OFC is
a large collection of independent quantum harmonic oscil-
lator modes, or ‘‘qumodes’’ (a term used in analogy with
‘‘qubit’’). Quantum information is encoded in the quad-
rature field variables of the OFC, analogs of position and
momentum for a mechanical oscillator. The OFC can
comprise millions of modes and has outstanding classical
coherence properties that have found groundbreaking ap-
plications in the revolutionary and now ubiquitous use of
mode- and carrier-envelope-phase-locked femtosecond la-
sers in time or frequency metrology [22,23].
The second crucial element of the OPO is the nondissi-

pative nonlinear medium placed in the cavity. In a basic
OPO, this medium is pumped by a monochromatic field
and promotes down-conversion, i.e., the simultaneous ab-
sorption of a pump photon at frequency!p and emission of

a photon pair at OFC frequencies !m and !n such that
!p ¼ !m þ!n, as well as up-conversion, the reverse

process. Such interactions yield bipartite CVentanglement
of the OFC qumodes at frequencies!m and!n [24]. In the
OPO we propose to use, the nonlinear medium is specifi-
cally engineered to quasiphasematch [25,26] several such
interactions simultaneously [27]. This, along with a poly-
chromatic pump, allows one to ‘‘write’’ an entangled net-
work onto the OFC using pairwise couplings. We show in
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this Letter that this network can be made to precisely
constitute a large CV cluster state, universal for one-way
QC, and whose scaling requires no increase in pump com-
plexity (number of frequencies) and only linear increases
in pump intensity and nonlinear gain bandwidth.

A CV cluster state [15,16] is defined as any member of a
family of squeezed states indexed by an overall squeezing
parameter r > 0 for which the variance of each component
of (p� Aq) tends to 0 as r ! 1 [21]. Here, q ¼
ðq1; . . . ; qNÞT and p ¼ ðp1; . . . ; pNÞT are vectors of ampli-
tude and phase quadrature operators, respectively, and A is
the (weighted, undirected) adjacency matrix of the cluster
state’s N-node graph [17]. The infinite-squeezing limit is
not achievable by any finite-energy state, an important
point we address later.

We consider an OPO that implements the following
Hamiltonian, in the interaction picture and assuming a
classical undepleted pump [17,28]:

H ðAÞ ¼ i@�
X
m;n

Amnðaymayn � amanÞ; (1)

where � > 0 is an overall nonlinear coupling strength
(squeezing parameter per unit time). The nodes of the
graph described by A correspond to OPO qumodes and
any (m, n) edge is weighted by Amn, whose magnitude is
the qumode coupling strength in units of � and whose sign
indicates down-conversion if positive and up-conversion if
negative. In previous work [17], we showed that H ðAÞ
always generates a CV cluster state whose graph is gen-
erally not given by A. If A is an orthogonalmatrix, though,
the graph is given by A—a fact we previously used to
construct an H ðAÞ that generates large sets of very small
(2� 2 or 2� 3) CV cluster states [29]. Being discon-
nected, these cluster states are not universal for QC, but
requiring orthogonality is a useful simplification. Here, we
construct an orthogonal A for which H ðAÞ generates a
QC-universal CV cluster state.

Labeling rows and columns of A by sequential OFC
modes, H ðAÞ is easy to implement experimentally when
A is a Hankel matrix (i.e., has constant skew diagonals).
Any pump frequency !p satisfying !p ¼ !m þ!n, to-

gether with the assumption of a constant interaction
strength, generates a constant skew diagonal in A and
sets all its entries to the same value, fixed by the pump
power. Additional pump frequencies generate additional
skew diagonals, resulting in A having Hankel form. This
connection, along with a useful shorthand for Hankel
matrices, is illustrated in Fig. 1 and in Ref. [30].

QC-universal CV cluster state.—We desire a CV cluster
state that is universal for one-way QC [16], whose graph is
bicolorable [17], and whose adjacency matrix is orthogonal
and Hankel for experimental simplicity [29]. Orthogo-
nality of the adjacency matrix (AAT ¼ 1) for an undirected
graph (A ¼ AT) yields A2 ¼ 1, or

ðA2Þjk ¼
X
l

AjlAlk ¼ �jk: (2)

Equation (2) has a geometric interpretation: ðAnÞjk repre-

sents the sum of the weights of all n-length paths from node
j to node k, where the weight of such an ‘‘n-path’’ equals
the product of all edge weights along the path. Equation (2)
requires that all 2-paths that begin and end on the same
node have weights that sum to 1, while those that link
different nodes have weights that cancel out.
The usual candidate for a QC-universal graph is the

square lattice [4]. This graph is irregular at the boundaries,
so Eq. (2) cannot be satisfied for any real-valued weighting
of it. Applying toroidal boundary conditions will make it
regular, but orthogonality is still prohibited because there
exist pairs of distinct nodes connected by only one 2 path,
for which the sum in Eq. (2) collapses to one nonzero term.
While real-valued weights cannot satisfy Eq. (2) for a

toroidal square lattice, matrix-valued weights can. In such
a case, Eq. (2) becomes

P
lAjlAlk ¼ �jk1, where the ‘‘en-

tries’’ Ajl are themselves m�mmatrices. This means A is

now an adjacency matrix on an ðmNÞ-node graph. On the
other hand, treating them�m blocks as single entries, A is
the matrix-weighted adjacency matrix for what we call a
supergraph, which has macronodes consisting of m indi-
vidual nodes each. Figure 2 illustrates the meaning of
matrix-weighted edges between macronodes for the simple
case of a ring supergraph, where m ¼ 2.
We henceforth promote the toroidal square lattice to a

supergraph, illustrated in Fig. 3. The lattice has degree four,
so we choose our matrix-valued weights to be four mu-
tually orthogonal rank-one projectors onto R4:

�0 ¼ �þ � �þ; �1 ¼ �þ � ��;

�2 ¼ �� � �þ; �3 ¼ �� � ��;
(3)

where

FIG. 1 (color). Hankel shorthand and pump specification. A
Hankel matrix is uniquely specified by the entries along the top
and down the right side. We collect these entries into a shorthand
vector, representing the entire matrix itself, with the top-right
entry set off with slashes. When A is Hankel, its shorthand vector
immediately specifies the pump spectrum required to implement
H ðAÞ. Each nonzero entry in the shorthand vector denotes the
amplitude of a frequency in the pump, each of which generates
CV entanglement between pairs of qumodes in the OFC sym-
metric about half that frequency. This accounts for all couplings
prescribed by A.
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�� ¼ 1

2

1 �1
�1 1

� �
:

Note that the toroidal embedding in Fig. 3 involves a twist
of one unit in both dimensions, a subtlety of little physical
consequence but which allows for a Hankel A at the super-
graph level (using the Hankel shorthand defined in Fig. 1):

A¼½0u;�1;0v;�0;0u;�3;0=�2=0u;�1;0v;�0;0u;��3;0�;
(4)

where 0k is a list of k zero matrices, the size of which is
governed by context (4� 4 in this case), there are M2

macronodes (with M even), u ¼ M� 1, and v ¼ M2 �
2M� 3. Orthogonality (AAT ¼ 1) is easily verified.

TheM-indexed family of these cluster states is universal
for CV one-way QC. To see this, first measure q on three
physical nodes per macronode to reduce the supergraph to
a uniformly-weighted graph with the same structure (see
Fig. 3). Then cut open the toroidal lattice by measuring q
along two orthogonal meridians to form an ordinary lattice,
known to be universal [16].
The matrix A, while Hankel at the supergraph level, is

block-Hankel (with 4� 4 blocks) at physical node level. A
suitable renumbering of nodes will reduce the blocks to
2� 2 while maintaining the block-Hankel structure:

Affi½0s;��;0t;�þ;0s;�þ;0;��;0s;��;0t;�þ;0s;��;0=�þ=0s;��;0t;�þ;0s;�þ;0;��;0s;��;0t;�þ;0s;��;0�; (5)

where s ¼ 2M� 1, t ¼ M2 � 4M� 3, and ffi indicates
equality up to node renumbering [to which the negative
sign on �3 in Eq. (4) is crucial]. These cluster states are
QC-universal, bicolorable, and orthogonal—but still only
block-Hankel. This is nevertheless sufficient for simple
experimental implementation.

Experimental implementation.—In Eq. (5), each ��
block corresponds to a single pump frequency. Such cou-
plings can be implemented using the two orthogonal polar-
izations of an optical field at a given frequency, as was
experimentally demonstrated by simultaneously quasipha-
sematching polarization-sensitive interactions ZZZ, ZYY,
and YZY=YYZ (first letter is pump polarization) in a
periodically poled KTiOPO4 (KTP) crystal [27]. The dif-
ference between �� and �þ is thus a 180� phase-shift in
the Y-polarized pump mode. A narrowband pump polar-
ized at �45� in the (ZY) plane implements a �� skew-

diagonal band in A. Equation (5) therefore translates into

a single OPO pumped by exactly 15 frequencies. Inter-

actions with OFC modes outside the desired subset must

also be strictly suppressed, which can be done by cavity

mirror design and/or by quasiphasematching design [26].
While the pump spectrum is relatively complex, requiring
15 frequencies, that number is constant with respect to the
lattice size, making this construction extremely scalable.

Note that, in principle, additional physical parameters
like wave vector direction or transverse mode structure
could be used to directly implement block-Hankel A’s

with larger blocks (e.g., 4� 4). This would reduce pump

complexity but require a more sophisticated OPO.
Finally, we provide realistic estimates for the scaling

potential of the CV cluster state with N macronodes (N ¼
M2) and constant overall coupling strength �. The pump
spectrum complexity and the OFC are independent of N.
Only two quantities scale linearly withN: the overall pump
power and the bandwidth of the nonlinear coupling. The
number of pump photons must increase with the number of
entangled qumode pairs (number of graph edges), which
grows linearly with N in a square lattice. Two-mode CV
entanglement can be obtained at a few milliwatts pump
power, with the upper limit being the optical damage limit,
which in KTP is at least several watts (focused,

FIG. 3 (color). Toroidal lattice supergraph and underlying
graph structure. Each macronode in the supergraph (left) consists
of four physical nodes, and each color corresponds to one of the
four matrix-valued weights �j from Eq. (3). Entries in �j

specify the real-valued weights connecting the underlying physi-
cal nodes (right). Measuring q on each physical node in three of
the four ‘‘layers’’ leaves the remaining layer in a uniformly
weighted QC-universal toroidal lattice cluster state.

FIG. 2 (color). Matrix-valued weights and supergraphs.
Matrix-valued weights connect the macronodes of a ‘‘ring’’
supergraph (left). The entries in �� (see text) specify the real-
valued weights in the actual ‘‘crown’’ graph (right) that connects
the underlying physical nodes. Measuring q for each of the
physical nodes in the top layer of the crown leaves the bottom
layer in a uniformly weighted ring-graph CV cluster state.
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continuous-wave), thus yielding 3 orders of magnitude of
scaling range. The bandwidth of the nonlinear coupling
(100 GHz to 1 THz) must encompass the whole desired set
of qumodes, separated by the cavity’s free spectral range
(100 MHz for a 1.5-meter-long cavity), which yields 3 or 4
orders of magnitude. These figures reflect ordinary—rather
than state-of-the-art—performance and do not account for
other interesting avenues such as implementing nonlinear
couplings in slow light media. These estimates show our
approach has a realistic potential for significant scaling.

Finite squeezing and CV fault tolerance.—The finite-
squeezing approximation is a special case of more general
considerations of error correction and fault-tolerance for
one-way QC using CV cluster states. Certainly, more
squeezing is preferable to less, but the amount required
for any particular QC task remains an open question, and
it’s unclear how the nonlinear coupling strength � in
Eq. (1) will need to scale with N for any par-
ticular QC application. Our results are nonetheless com-
pelling because as N increases, the new interactions gen-
erated have the same squeezing strength as existing ones—
i.e., existing squeezing is not ‘‘redistributed’’ to the new
pairings as the lattice and pump power grow. Moreover,
scalability does enable quantum encoding redundancy.
While finite-squeezing errors can be mitigated in medium-
sized proof-of-principle experiments with CV cluster states
[16], and some work also addresses CV error correction in
general [14,31], the task of rigorously establishing a fault-
tolerance threshold for CV one-way QC is an important
open problem.We hope to spur further investigations along
these lines.

Conclusion.—We have presented a theoretical result that
opens the door to large-scale experimental generation of a
universal one-way quantum computing resource, using
existing technology. The entangled states produced by
this method will also be objects of interest in the study of
entanglement at mesoscopic scales.

This method of entangling—in one fell swoop—a large
optical frequency comb into a continuous-variable cluster
state is the first ‘‘top-down’’ approach proposed for one-
way quantum computation using optical encodings of in-
formation in either discrete or continuous variables. While
open questions remain about the effects of finite squeezing
on scalability for particular quantum computing tasks, the
unprecedented scalability of this method encourages fur-
ther theoretical research. Experimental implementation is
already underway.
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