251 research outputs found

    Triangular algebras with nonlinear higher Lie n-derivation by local actions

    Get PDF
    This paper was devoted to the study of the so-called nonlinear higher Lie n-derivation of triangular algebras T \mathcal{T} , where n n is a nonnegative integer greater than two. Under some mild conditions, we proved that every nonlinear higher Lie n-derivation by local actions on the triangular algebras is of a standard form. As an application, we gave a characterization of higher Lie n n -derivation by local actions on upper triangular matrix algebras, block upper triangular matrix algebras and nest algebras, respectively

    The cingulum as a marker of individual differences in neurocognitive development.

    Get PDF
    The canonical approach to exploring brain-behaviour relationships is to group individuals according to a phenotype of interest, and then explore the neural correlates of this grouping. A limitation of this approach is that multiple aetiological pathways could result in a similar phenotype, so the role of any one brain mechanism may be substantially underestimated. Building on advances in network analysis, we used a data-driven community-clustering algorithm to identify robust subgroups based on white-matter microstructure in childhood and adolescence (total N = 313, mean age: 11.24 years). The algorithm indicated the presence of two equal-size groups that show a critical difference in fractional anisotropy (FA) of the left and right cingulum. Applying the brain-based grouping in independent samples, we find that these different 'brain types' had profoundly different cognitive abilities with higher performance in the higher FA group. Further, a connectomics analysis indicated reduced structural connectivity in the low FA subgroup that was strongly related to reduced functional activation of the default mode network. These results provide a proof-of-concept that bottom-up brain-based groupings can be identified that relate to cognitive performance. This provides a first demonstration of a complimentary approach for investigating individual differences in brain structure and function, particularly for neurodevelopmental disorders where researchers are often faced with phenotypes that are difficult to define at the cognitive or behavioural level.The Centre for Attention Learning and Memory (CALM) research clinic is based at and supported by funding from the MRC Cognition and Brain Sciences Unit, University of Cambridge

    SAM Meets Robotic Surgery: An Empirical Study on Generalization, Robustness and Adaptation

    Full text link
    The Segment Anything Model (SAM) serves as a fundamental model for semantic segmentation and demonstrates remarkable generalization capabilities across a wide range of downstream scenarios. In this empirical study, we examine SAM's robustness and zero-shot generalizability in the field of robotic surgery. We comprehensively explore different scenarios, including prompted and unprompted situations, bounding box and points-based prompt approaches, as well as the ability to generalize under corruptions and perturbations at five severity levels. Additionally, we compare the performance of SAM with state-of-the-art supervised models. We conduct all the experiments with two well-known robotic instrument segmentation datasets from MICCAI EndoVis 2017 and 2018 challenges. Our extensive evaluation results reveal that although SAM shows remarkable zero-shot generalization ability with bounding box prompts, it struggles to segment the whole instrument with point-based prompts and unprompted settings. Furthermore, our qualitative figures demonstrate that the model either failed to predict certain parts of the instrument mask (e.g., jaws, wrist) or predicted parts of the instrument as wrong classes in the scenario of overlapping instruments within the same bounding box or with the point-based prompt. In fact, SAM struggles to identify instruments in complex surgical scenarios characterized by the presence of blood, reflection, blur, and shade. Additionally, SAM is insufficiently robust to maintain high performance when subjected to various forms of data corruption. We also attempt to fine-tune SAM using Low-rank Adaptation (LoRA) and propose SurgicalSAM, which shows the capability in class-wise mask prediction without prompt. Therefore, we can argue that, without further domain-specific fine-tuning, SAM is not ready for downstream surgical tasks.Comment: Accepted as Oral Presentation at MedAGI Workshop - MICCAI 2023 1st International Workshop on Foundation Models for General Medical AI. arXiv admin note: substantial text overlap with arXiv:2304.1467

    S2^2ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for Scribble-supervised Polyp Segmentation

    Full text link
    Fully-supervised polyp segmentation has accomplished significant triumphs over the years in advancing the early diagnosis of colorectal cancer. However, label-efficient solutions from weak supervision like scribbles are rarely explored yet primarily meaningful and demanding in medical practice due to the expensiveness and scarcity of densely-annotated polyp data. Besides, various deployment issues, including data shifts and corruption, put forward further requests for model generalization and robustness. To address these concerns, we design a framework of Spatial-Spectral Dual-branch Mutual Teaching and Entropy-guided Pseudo Label Ensemble Learning (S2^2ME). Concretely, for the first time in weakly-supervised medical image segmentation, we promote the dual-branch co-teaching framework by leveraging the intrinsic complementarity of features extracted from the spatial and spectral domains and encouraging cross-space consistency through collaborative optimization. Furthermore, to produce reliable mixed pseudo labels, which enhance the effectiveness of ensemble learning, we introduce a novel adaptive pixel-wise fusion technique based on the entropy guidance from the spatial and spectral branches. Our strategy efficiently mitigates the deleterious effects of uncertainty and noise present in pseudo labels and surpasses previous alternatives in terms of efficacy. Ultimately, we formulate a holistic optimization objective to learn from the hybrid supervision of scribbles and pseudo labels. Extensive experiments and evaluation on four public datasets demonstrate the superiority of our method regarding in-distribution accuracy, out-of-distribution generalization, and robustness, highlighting its promising clinical significance. Our code is available at https://github.com/lofrienger/S2ME.Comment: MICCAI 2023 Early Acceptanc

    Central Asia: The Vanguard in Jointly Building the «Belt & Road» Community of Shared Future for Mankind

    Get PDF
    The Silk Road originated in China, while Central Asia served as the crossroads of the Eurasian region. In 140 BC, during the Han Dynasty, Zhang Qian embarked on a mission to the Western Regions, present-day Central Asia. He paved the way from the East to the West, completing a challenging journey. President Xi proposed constructing the Silk Road Economic Belt (SREB) in Kazakhstan, making Central Asia the starting point and the first western station of the Belt and Road Initiative (BRI). Central Asia has always been at the forefront of building the BRI, setting an example for constructing a community with a shared future for humanity

    Modeling Spatiotemporal Periodicity and Collaborative Signal for Local-Life Service Recommendation

    Full text link
    Online local-life service platforms provide services like nearby daily essentials and food delivery for hundreds of millions of users. Different from other types of recommender systems, local-life service recommendation has the following characteristics: (1) spatiotemporal periodicity, which means a user's preferences for items vary from different locations at different times. (2) spatiotemporal collaborative signal, which indicates similar users have similar preferences at specific locations and times. However, most existing methods either focus on merely the spatiotemporal contexts in sequences, or model the user-item interactions without spatiotemporal contexts in graphs. To address this issue, we design a new method named SPCS in this paper. Specifically, we propose a novel spatiotemporal graph transformer (SGT) layer, which explicitly encodes relative spatiotemporal contexts, and aggregates the information from multi-hop neighbors to unify spatiotemporal periodicity and collaborative signal. With extensive experiments on both public and industrial datasets, this paper validates the state-of-the-art performance of SPCS.Comment: KDAH CIKM'23 Worksho
    • …
    corecore