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Abstract

Dynamic connectivity in functional brain networks is a fundamental aspect of cogni-

tive development, but we have little understanding of the mechanisms driving vari-

ability in these networks. Genes are likely to influence the emergence of fast

network connectivity via their regulation of neuronal processes, but novel methods

to capture these rapid dynamics have rarely been used in genetic populations. The

current study redressed this by investigating brain network dynamics in a neu-

rodevelopmental disorder of known genetic origin, by comparing individuals with a

ZDHHC9-associated intellectual disability to individuals with no known impairment.

We characterised transient network dynamics using a Hidden Markov Model (HMM)

on magnetoencephalography (MEG) data, at rest and during auditory oddball stimula-

tion. The HMM is a data-driven method that captures rapid patterns of coordinated

brain activity recurring over time. Resting-state network dynamics distinguished the

groups, with ZDHHC9 participants showing longer state activation and, crucially,

ZDHHC9 gene expression levels predicted the group differences in dynamic connec-

tivity across networks. In contrast, network dynamics during auditory oddball stimu-

lation did not show this association. We demonstrate a link between regional gene

expression and brain network dynamics, and present the new application of a power-

ful method for understanding the neural mechanisms linking genetic variation to cog-

nitive difficulties.
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1 | INTRODUCTION

In recent years, whole-brain imaging methods have advanced our abil-

ity to characterise functional brain connectivity, and have revealed

that distributed neural systems support cognition and behaviour

(Astle, Barnes, Baker, Colclough, & Woolrich, 2015; Barnes, Woolrich,

Baker, Colclough, & Astle, 2016; Smith et al., 2015; Vidaurre et al.,

2017). Disruptions to functional connectivity are considered a charac-

teristic feature of multiple developmental disorders, but surprisingly

little is known about the mechanisms that drive this variability. It is

well known that genetic factors influence the intrinsic organisation of

functional networks (e.g., Bathelt, Astle, Barnes, Raymond, & Baker,Erin Hawkins and Danyal Akarca contributed equally to this study.
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2016, 2017; Colclough et al., 2017; Wang et al., 2015). In many cases,

genes are likely to influence the developmental emergence of func-

tional networks via regulation of continuous activity-dependent physi-

ological processes, rather than by fixed anatomical differences.

However, understanding of the rapid synchronisation and integration

of functional connectivity networks at fast time-scales, in the range of

100–200 milliseconds, is limited. This is partly because there is a scar-

city of methods capable of characterising the fast dynamics of brain

networks. As a result, there is currently little understanding of the

genetic effects on these networks and the cellular mechanisms that

could drive their developmental variability or the consequences of

perturbations to these network dynamics for cognition. The aim of

this study is to redress this by exploring dynamic transient brain con-

nectivity in a group of individuals with a neurodevelopmental disorder

of known genetic origin.

The current methods capable of deriving system-wide neural net-

works largely assume that the networks remain stationary over time.

Functional magnetic resonance imaging (fMRI) has been the primary

method for investigating coordination between brain regions, by mea-

suring covariations in the haemodynamic response (Beckmann et al.,

2005; Damoiseaux et al., 2006; Smith et al., 2009). Magnetoencepha-

lography (MEG) provides a powerful complement to fMRI because it

captures the electrical properties of neural activity of the underlying

networks (Barnes et al., 2016). The primary approach to identifying

functional connectivity networks with MEG is to measure the syn-

chronisation between the amplitude envelopes of oscillations within

certain frequency bands, which yields networks of coordinated activ-

ity across spatially separate brain regions (de Pasquale et al., 2010;

O'Neill et al., 2015; Sudre et al., 2017). This approach has

characterised resting-state networks (RSNs) that show a closely over-

lapping topography with those found using fMRI (Astle et al., 2015;

Barnes et al., 2016; de Pasquale et al., 2010; Demuru et al., 2017).

However, with both fMRI and MEG, the estimates of functional con-

nectivity are typically derived by aggregating activity over large time

windows, such as the full resting state acquisition period. This defines

large-scale networks as remaining stationary, whether during rest or

task performance. Yet, recent work suggests large-scale neural net-

works may synchronise their activity on a timescale of around

50–200 ms, including at rest, and switching far more quickly than can

be captured using averages taken from time window methods (Baker

et al., 2014; Colclough et al., 2017; Hindriks et al., 2016; Vidaurre

et al., 2016; Vidaurre et al., 2017). This rapid synchronisation may help

these large-scale networks play an important role in supporting cogni-

tive processes.

More recently, researchers have developed analytical techniques

that fully capitalise on the high temporal resolution of MEG. An exam-

ple is the use of Hidden Markov Modelling (HMM) to explore the tem-

poral dynamics of these networks (Baker et al., 2014; Vidaurre et al.,

2016; Vidaurre et al., 2017; Vidaurre et al., 2018). Instead of estimat-

ing the correlation between band-limited amplitude envelopes sepa-

rately in one large time window at a time, the HMM is a data-driven

method that identifies a sequence of “states”, whereby each state cor-

responds to a unique pattern of brain network activity and correlation

that reoccurs at different points in time. For example, the pattern of

amplitude envelope activity that characterises each state can be well-

estimated by pooling over the evidence provided by the many

repeated visits to the state. This means that individual state visits can

be potentially very short in time. Indeed, it has been shown that the

HMM can identify network dynamics in resting MEG on ~100 ms

time-scale, which is much faster than can be investigated with tradi-

tional sliding time window approaches (Baker et al., 2014; Vidaurre

et al., 2016). By quantifying the time-series of MEG data as a

sequence of transient states, the HMM provides information about

the points in time at which each state is active, enabling the character-

isation of the temporal dynamics of each state or network. Further-

more, the HMM allows the detection of rapid, transient organisation

of brain networks and therefore represents a powerful tool for under-

standing how network dynamics can be influenced by, for example,

genetic factors.

The application of these methods remains in its infancy. As a

result, we have yet to establish how underlying neurobiological or

molecular mechanisms can influence the formation of these large-

scale networks or their intrinsic temporal dynamics. Individuals with

rare single-gene mutations can represent a unique and interesting

window to investigate the specific interactions between cellular and

physiological processes involved in cognitive development. This is

because, unlike neurodevelopmental disorders defined by behavioural

impairments, they have a highly specific and known aetiology, com-

mon across all cases. Here, we studied a group of individuals with

mutations in ZDHHC9, a rare recurrent cause of X-linked intellectual

disability (XLID; Han et al., 2017; Raymond et al., 2007; Schirwani,

Wakeling, Smith, Study, & Balasubramanian, 2018; Masurel-Paulet

et al 2014). We previously found that individuals with ZDHHC9 muta-

tions are susceptible to a combined phenotype of speech and lan-

guage impairments, cognitive difficulties and Rolandic Epilepsy (RE;

Baker et al., 2015). We also found that individuals with ZDHHC9

mutations have differences in structural connectivity which converge

with the topography of ZDHHC9 expression in the normal adult brain

(Bathelt et al 2017). ZDHHC9 encodes a palmitoylation enzyme

involved in the posttranslational modification and intracellular traffick-

ing of specific target substrates, including recruitment of receptors

and ion channels to the synapse (Fukata & Fukata, 2010). Although

multiple substrates may be relevant to neurodevelopmental disorders,

one palmitoylation target is thought to be Post-Synaptic Density pro-

tein 95 (PSD-95) which is critical to activity-dependent AMPA recep-

tor availability (El-Husseini et al., 2000a; El-Husseini et al., 2000b;

Bredt et al., 2010). Palmitoylation is itself activity-dependent and

influences synaptic stability across multiple timescales during develop-

ment (Globa & Bamji, 2017; Kang et al., 2008; Kaur et al., 2016; Levy &

Nicoll, 2017). Hence, the loss of ZDHHC9 function and reduction in

palmitoylation efficiency may alter dynamic aspects of postsynaptic

activity, impacting on the emergence and stability of structural and

functional networks supporting cognition. Because of this proposed

physiological role of ZDHHC9, we predicted that mutations to the

gene might result in a perturbation to the dynamic nature of large-

scale neural networks. Furthermore, we sought to assess whether
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those networks most altered would reflect the regional expression

profile of the gene, whereby the temporal dynamics would be altered

maximally in those networks in which the gene is highly expressed.

We investigated the dynamics of functional networks at rest and

during an auditory oddball task in individuals with ZDHHC9 mutations

and control participants. We included both protocols because it is

unclear whether the impact of a mutation upon neuronal dynamics

would be most apparent when the system is at ‘rest’ or when under

sensory stimulation. For our stimulation protocol, we chose an audi-

tory oddball task because ZDHHC9 participants have previously been

shown to have impaired language development (Baker et al., 2015).

Auditory oddball tasks, which require rapid habituation to a repeated

standard stimulus and sensitivity to deviations from this stimulus,

have been used to index auditory processing in developmental lan-

guage disorders. These studies have established that language impair-

ment is frequently associated with poorer auditory change detection

and reduced sensitivity to phonetic and linguistic cues (Ahmmed,

Clarke, & Adams, 2008; Baldeweg, Richardson, Watkins, Foale, &

Gruzelier, 1999; Datta, Shafer, Morr, Kurtzberg, & Schwartz, 2010;

Davids et al., 2011; Shafer, Yu, & Datta, 2011).

In sum, the aim of this study was to apply the novel HMM method

to map dynamic neural abnormalities in individuals with ZDHHC9

single-gene loss-of-function mutations, during both rest and a passive

auditory task, to determine whether these abnormalities relate to the

expression profile of the gene. As we sought to assess whether

regionally specific distribution of the ZDHHC9 gene was associated

with dynamic network differences in individuals with pathogenic vari-

ants of this gene, within our analysis we also compared neuronal

dynamics with the expression profiles of other genes with known phe-

notypes that overlap with the ZDHHC9 phenotype: FMR1, for which

loss-of-function variants are the most common monogenic cause of

intellectual disability (Bourgeois et al., 2009) and FOXP2, a gene linked

with language disability (Vargha-Khadem et al., 2005). To the best of

our knowledge, this is the first study that has sought to establish

whether there is a link between the dynamics of large-scale brain net-

works, and the regional expression of a gene associated with synaptic

regulation.

2 | METHODS

2.1 | Participants

Eight male participants with an inherited mutation to ZDHHC9 (age

in years: mean = 26.70, standard deviation (SD) = 13.74, range =

13.25–41.83) were compared to seven age-matched male controls

(age in years: mean = 27.23, SD = 14.05, range = 10.17–42.50; t =

−0.74, p = .943). All control participants had no history of neurological

disorders or cognitive impairments. For a detailed description of clini-

cal and cognitive characteristics of the ZDHHC9 group, compared to

an age and IQ matched control group, refer to Baker et al. (2015). In

brief, ZDHHC9 participants had mild to moderate intellectual disability

(standardised IQ scores: mean = 64.88, SD = 5.70, range = 57–73).

Additionally, they displayed poor verbal fluency, difficulties with

nonspeech oromotor control, and relatively strong receptive language

abilities compared to expressive and written abilities. These communi-

cation characteristics distinguished the ZDHHC9 group from an age-

and IQ-matched comparison group (Baker et al., 2015). Ethical

approval for the study was granted by the Cambridge Central

Research Ethics Committee (11/0330/EE).

2.2 | MEG data acquisition and pre-processing

For each participant, we acquired data during 9 minutes of eyes-

closed resting state and a 12 minutes passive auditory oddball task.

The data acquired from these two protocols were analysed separately,

although using the same pipeline (Figure 1). During the resting-state

scan, participants were instructed to relax with their eyes closed and

allow their mind to wander, without thinking of anything in particular,

but without falling asleep. The oddball task was based upon a design

by Cowan et al. (1993) using a roving standard stimulus and delivered

in two 6 minutes blocks. Participants heard a sequence of tones at the

same frequency, followed by a sequence of tones of a different fre-

quency. The repeated tone in each sequence was, therefore, the stan-

dard stimulus, and first tone of the new sequence was the deviant

tone. The frequency of the repeated standard stimuli altered randomly

between three frequencies of 250, 500 and 1,000 Hz. The number of

standard stimulus presentations that occurred in a single stimulus

train varied randomly from 6 to 12. Tones were 50 ms in duration and

the inter-tone interval was 500 ms. Participants were asked to watch

a silent nature documentary and to ignore the tones.

MEG data were acquired at the MRC Cognition and Brain Sci-

ences Unit, Cambridge, UK. All scans were obtained using the

306-channel high-density whole-head VectorView MEG system

(Elekta Neuromag, Helsinki), consisting of 102 magnetometers and

204 orthogonal planar gradiometers, located in a light magnetically

shielded room. Data were sampled at 1 kHz and signals slower than

0.01 Hz were not recorded. Before acquisition a 3D digitizer (Fastrack

Polhemus Inc., Colchester, VA) was used to record the positions of

five head position indicator (HPI) coils and 50–100 additional head-

shape points evenly distributed over the scalp, all relative to the par-

ticipants’ fiducial points (nasion and left and right preauricular), which

could later be co-registered on MRI scans for source reconstruction.

An ECG electrode was attached to each wrist to measure the pulse,

and we attached bipolar electrodes to obtain horizontal and vertical

electrooculograms (HEOGs and VEOGs). Head position was moni-

tored throughout the recoding using the HPI coils.

External noise was removed from the MEG data using a signal-

space separation (sss) method, and adjustments in head position dur-

ing the recording were compensated for using MaxMove software,

both implemented in MaxFilter version 2.1 (Elekta Neuromag). Fol-

lowing this, data were converted to an SPM12 format and down-

sampled to 250 Hz. Continuous data were inspected and short sec-

tions with large signal jumps or artefacts were removed. A temporal

independent component analysis (FastICA) was used in sensor space

to remove artefacts arising from blinks, saccades and pulse-related

cardiac artefacts, by manual visual inspection. The criterion for
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removing artefacts was a high correlation between the topography of

an independent component and one of the HEOG, VEOG and ECG

channels. The artefacts were removed by subtraction. Approximately

2–4 components were removed per participant.

2.3 | MEG source reconstruction, parcellation and
envelope calculation

Each participant's continuous pre-processed MEG data were co-

registered to their individual structural T1-weighted MRI scan with a

1 mm image resolution, using the digitised headshape points and fidu-

cials. For one ZDHHC9 participant without an individual MRI scan, we

used a T1-weighted 1 mm template in MNI space. Co-registration was

run using the OSL toolbox in SPM12 (https://ohba-analysis.github.io/

osl-docs/), which aligned the MRI coordinates with the fiducials and

headshape points before positioning these data within the MEG sen-

sors using the HPIs for source space analysis.

The MEG sensor data were then low pass filtered at 4–30 Hz, to

focus on slower frequencies only. This is the frequency range at which

amplitude correlations have been shown to produce robust resting-

state brain networks and better distinguish true from spurious con-

nectivity (Colclough et al., 2016; Luckhoo et al., 2012). For each sub-

ject, source space activity was then estimated at every point of an

8 mm whole-brain grid using a linearly constrained minimum variance

(LCMV) scalar beamformer that combines information across both

sensor types and accounts for the reduction in dimensionality induced

by the signal-space separation method (Van Veen et al., 1997;

Woolrich, Hunt, Groves, & Barnes, 2011). The beamformer used a set

of adaptive spatial filters to weight the sensor measurements into an

estimate of neuronal activity using the cortical grid, by maximising the

band-passed signal at each grid point whilst minimising the signal pas-

sed from all other grid points. This process aimed to reduce the effect

of signal leakage from neighbouring regions in order to provide a more

accurate estimate of activity at each grid location. The beamformer

repeated this process across all grid points to produce a whole-brain

reconstruction of source-space activity.

Following the beamformer projection of the oscillatory signal into

source space, the data across all grid points underwent parcellation

into 38 regions of interest using an 8 mm mask, applying the method

described in Colclough, Brookes, Smith, and Woolrich (2015) and Col-

clough et al. (2017). In brief, each parcel was identified using a sym-

metric orthogonalisation to produce parcel time-courses which were

as close as possible to the original time-courses across voxels whilst

minimising signal leakage, and correcting for source spread. The time-

course of oscillatory activity within each parcel was then obtained

using a principal components analysis (PCA), in which the time-

F IGURE 1 The processing and analysis pipeline used on the resting state and oddball task data
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courses from all voxels in the parcel were submitted to a PCA, where

the first principal component explaining the majority of variance

across voxels within each parcel was used as the time-course estimate

for that parcel using the spatial filter method (for full details of this

method see Colclough et al., 2015).

The amplitude envelope of each parcel's oscillatory time-course

was then calculated using a Hilbert transform, which estimated the

instantaneous signal amplitude at each time point. As in Baker et al.

(2014), for computational efficiency the amplitude envelopes were

downsampled to 40 Hz by temporally averaging within sliding win-

dows with a width of 100 ms and 75% overlap between consecutive

windows. The parcellation of the source-space data acted to reduce

the dimensionality of the oscillatory activity across all source locations

into 38 time-courses, to be submitted to the HMM. The amplitude

envelopes were then concatenated temporally across all participants

to produce a single dataset for the HMM analysis. This procedure

assumed that the same set of microstates underpinned the HMM-

derived states across participants. The envelope data from each par-

ticipant were demeaned and normalised by their variance prior to

concatenation.

2.4 | Group level exploratory analysis of networks
(Hidden Markov Model)

We ran the HMM using the group-level exploratory analysis of net-

works (GLEAN) toolbox (https://github.com/OHBA-analysis/GLEAN;

Vidaurre et al., 2017). The HMM is specified a priori to derive a cer-

tain number of states from the data; we set the HMM to infer eight

states, based on previous work suggesting that this number repre-

sents a reasonable trade-off between providing a sufficiently rich

description and avoiding an overly complex, and therefore hard to

interpret, representation (Baker et al., 2014).

The HMM describes the time-series of MEG amplitude envelope

data as a temporal sequence of states, where each state describes the

data as coming from a unique 38-dimensional multivariate normal dis-

tribution, defined by a covariance matrix and a mean vector. Each

state, therefore, corresponds to a unique pattern of amplitude enve-

lope activity and covariance that reoccurs at different points in time;

where the HMM state time-courses define the points in time at which

each state was “active”. The estimated state time-courses,

corresponding to a binary sequence showing the points in time when

that state was most probable, were obtained using the Viterbi algo-

rithm (Rezek & Roberts, 2005). To produce spatial maps of the

changes in amplitude envelope activity associated with each state, the

state time-courses were partially correlated onto whole-brain parcel-

wise amplitude envelopes concatenated across subjects. The resulting

state maps show the brain areas whose amplitude envelopes increase

or decrease when the brain visits that state, compared to what hap-

pens on average over time.

From the state time-courses, we were able to quantify the tempo-

ral characteristics of each state in terms of four measures of interest:

(a) Fractional occupancy: The proportion of time each state was

active, (b) Number of occurrences: The number of times a state was

active, (c) Mean life time: The average time spent in a state before

transitioning to another state, and (d) Mean interval length: the aver-

age duration between recurring visits to that state. Because these

temporal properties reflect the duration and frequency of the coordi-

nated oscillatory activity characterising each state, it was of particular

interest to examine whether the expression of the ZDHHC9 mutation

affected the dynamics of these connectivity patterns. To test this

hypothesis, we compared each of these temporal characteristics

between groups using non-parametric permutation testing. For each

temporal property, on each of the eight states, we randomly allocated

participants’ values to two groups and calculated the mean difference

between these groups. This process was repeated 10,000 times to

generate a null distribution of the mean difference between groups

that would be expected when group membership was random. The

actual group difference in state dynamics was then compared to the

permuted null distribution to assess whether this group difference

was greater than what we would have expected by chance, and the

position of the observed mean difference in the null distribution pro-

vided the p-value. All p-values were corrected for multiple compari-

sons using the Benjamini–Hochberg procedure for false discovery

rate (FDR) correction, which is appropriate for maximising power with

a large number of tests (Hochberg & Benjamini, 1990).

2.5 | Testing the association between gene
expression and state dynamics

Gene expression data were obtained from the Allen Brain Atlas

Human Brain public database (http://human.brain-map.org;

Hawrylycz et al., 2012). These datasets were based on microarray

analysis of postmortem tissue samples from six human donors aged

between 18 and 68 years with no known history of neuropsychiatric

or neurological conditions. MRIs and transformations from individual

donor MR space to MNI coordinates were also obtained from the

Allen Brain Atlas website. Gene expression (RNA) values were aver-

aged across these six donors and mapped onto areas of the Desikan–

Killiany (DK) parcellation of the MNI brain. This provided 68 cortical

regional ZDHHC9 expression values (34 in each hemisphere). We

repeated the same procedure for two other genes, both with well-

documented overlapping phenotypes with our group. The first was

FMR1. Loss of function variants of this gene are the most common

monogenic cause of intellectual disability (Bourgeois et al., 2009), and

thus overlaps with the formal diagnosis of our participants. The sec-

ond, FOXP2, is gene linked with language disability (Vargha-Khadem

et al., 2005), and thus overlaps with the oromotor language symptoms

of our group.

Next, we tested whether the impact of the mutation on dynamic

transient networks was predicted by the expression profile of these

genes. Specifically, does regional variation in the expression of a gene

predict which networks ought to be most disrupted by the mutation?

Simply performing a spatial correlation between the gene expression

and the activity pattern across parcels would not be viable because

the networks are highly variable. Instead, we calculated a gene expres-

sion value for each network, by taking the 20 most active parcels for
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each network and summing the level of gene expression. The 20 most

active parcels of each network were defined as those with the stron-

gest contribution to that network, which was indexed by the absolute

partial correlation of the state-time courses with the amplitude enve-

lopes in each parcel. Twenty parcels were selected by exploratory

analysis as this best reflected an optimal trade-off between peak acti-

vation and spatial state distribution.

The sum of these values thus provided an expression value for

the ZDHHC9, FMR1 and FOXP2 gene for each network. A null distri-

bution was generated from the random selection of 20 parcel

expression values across all 68 cortical parcels. This was done for

10,000 iterations to form the null distribution expression values

across each state. By comparing the gene expression value for each

network (found from the 20 most active parcels) to this null distribu-

tion, we were able to identify the level of gene expression within

each network, relative to what would be expected by chance. Once

we had these values for each state and each gene, we could test

whether the degree of expression of a particular gene would predict

the magnitude of the dynamic neural measures using Spearman's

correlations.

3 | RESULTS

3.1 | Dynamic transient networks derived from the
HMM in the resting state data

We first ran the HMM on resting data from the control and

ZDHHC9 participants separately, to verify that similar networks

were present in each group by visual inspection. The spatial patterns

of activity in each state strongly overlapped between groups, and

were similar to established resting-state networks at slower time-

scales (e.g., Damoiseaux et al., 2006; Smith et al., 2012) and to Baker

et al. (2014).

After confirming that we obtained similar spatial patterns of

activity in both groups, we ran the HMM on all participants’

concatenated data to derive common states across both groups, on

which we could then compare the groups on temporal measures of

interest. Table 1 and Figure 2 shows the spatial maps of each net-

work derived from the resting state data. In the spatial maps, the

red/yellow colours represent brain areas in which the amplitude

envelope increases when the brain visits that state and blue colours

represent brain areas in which the amplitude envelope decreases in

that state. The states included sensorimotor networks (State 1 and

State 3), a frontoparietal network (State 2), early visual networks

(State 4 and State 6), a higher-order visual network (State 5), a left

temporal network (State 7) and a distributed frontotemporoparietal

network (State 8).

We next characterised the temporal properties of each state in

terms of its fractional occupancy, number of occurrences, mean life

time and mean interval length. We tested whether these temporal

properties differed between the ZDHHC9 and control group using

nonparametric permutation testing, as described in section 2.4, and

corrected for multiple comparisons using the Benjamini–Hochberg

false discovery rate procedure. On the fractional occupancy measure

only an early visual network (State 4) distinguished the two groups,

whereby the ZDHHC9 group spent a higher percentage of time in

this state than the control group (actual group mean difference

6.92%; p = .01). No other states differed significantly between the

groups in fractional occupancy. In terms of the number of occur-

rences, none of the eight states differed between the groups. The

mean lifetime of the states differed between the groups on the early

visual network (State 4), where the duration spent in this state was

longer for the ZDHHC9 participants than controls, but this was non-

significant following multiple comparison correction. No other states

differentiated the groups. Table 1 presents the descriptive statistics

across all states, and Table 2 summarises the group differences and

statistical results.

F IGURE 2 The eight states inferred from the resting state data.
Each map shows the partial correlation between each state time
course and the parcel-wise amplitude envelopes. The partial
correlation values have been thresholded to show correlation values
above 70–80% of the maximum correlation for each state, and the
colour maps are normalised relative to all states
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3.2 | Dynamic transient networks derived from the
HMM in the oddball data

We applied the same analysis pipeline as described in the Methods to

the oddball dataset. Two ZDHHC9 participants were excluded from

the oddball analysis due to failed source reconstruction, but this did

not affect the age-matching of the samples (ZDHHC9 group age in

years: mean = 27.11, SD = 12.80, range = 13.25–41.83; comparison

with control group, t = −0.015, p = .988). As with the resting state

data, we first established whether similar networks were generated by

conducting the analysis on each group separately. Following this, we

combined the two groups into a single analysis. The eight states

derived from the oddball dataset can be seen in Figure 3. The states

included a parietal network (State 1), frontoparietal networks (State

2 and State 7), frontooccipital networks (State 3 and State 8), a

frontotemporal network (State 4), right temporoparietal network

(State 5) and bilateral temporal network (State 6).

We next examined whether the temporal properties of the net-

works distinguished the ZDHHC9 and control groups. As with the rest-

ing state data, we tested this using nonparametric permutation testing,

as described in the Methods, and corrected for multiple comparisons

using the Benjamini–Hochberg false discovery rate procedure. Table 1

summarises the descriptive statistics and Table 2 presents the statistical

comparisons between groups. In short, the groups consistently differed

in the bilateral temporal network (State 6) and frontooccipital network

(State 8) in fractional occupancy, number of occurrences and mean

interval length. The ZDHHC9 group spent a lower proportion of time in

both states, with a lower number of occurrences and shorter mean

interval length. However, these group differences were not significant

after correcting for multiple comparisons.

In summary, we were able to derive networks from both the

resting-state and oddball data, which showed good similarity to

known functional connectivity networks obtained from fMRI, and

time-averaged MEG data. The two groups differed significantly in an

early visual network in the resting state data, with ZDHHC9 partici-

pants spending a longer period of time in this state. In the oddball task

data, bilateral temporal and frontooccipital networks showed descrip-

tive between-group differences, with lower activation indices in the

ZDHHC9 group, but these differences were not significant following

multiple comparison correction. The next step in our analysis was to

explore the level of ZDHHC9, FMR1 and FOXP2 gene expression in

the HMM-derived networks, and test whether relative between-

group differences in network dynamics were associated with the rela-

tive expression profile of the gene.

3.3 | Statistical association between gene expression
and dynamic network group differences

Finally, we sought to determine whether ZDHHC9, FMR1 and FOXP2

gene expression would predict group differences in neuronal

TABLE 2 The results of the statistical tests for between-group differences in temporal dynamics across the resting state and oddball tasks

Group differences (control- ZDHHC9)

Fractional occupancy Number of occurrences Mean lifetime Mean interval length

Mean p Mean p Mean p Mean p

Resting state

State 1—Sensorimotor 0.99 .798 86.27 .170 −27.68 .312 −0.30 .255

State 2—Frontoparietal −0.07 .758 1.96 .592 113.33 .334 −51.85 .531

State 3—Right sensorimotor −2.94 .254 −48.80 .268 −3.54 .815 0.36 .253

State 4—Early visual −6.92 .010* −77.38 .098 −56.53 .031 0.39 .124

State 5—Higher-order visual 4.14 .428 77.48 .197 −20.03 .754 −4.27 .213

State 6—Early visual II 8.74 .145 162.07 .041 16.83 .520 −0.29 .060

State 7—Left temporal −2.73 .294 −30.11 .533 −20.07 .403 0.18 .522

State 8—Frontotemporoparietal −1.21 .599 −7.95 .765 −0.21 .999 −1.99 .976

Oddball task

State 1—Parietal −7.76 .261 −30.77 .482 −209.70 .089 71.30 .080

State 2—Frontoparietal −10.78 .139 −8.97 .118 −509.22 .067 18.70 .361

State 3—Fronto-occipital −0.94 .805 −11.17 .760 −95.44 .020 −13.10 .259

State 4—Frontotemporal 5.38 .624 17.35 .274 46.58 .695 −4.11 .434

State 5—Right temporoparietal −4.44 .577 −44.03 .507 −66.31 .459 30.10 .391

State 6—Bilateral temporal 10.09 .023 38.10 .032 −0.87 .988 −16.80 .018

State 7—Frontoparietal II −1.32 .814 −8.62 .794 −35.86 .660 −0.11 .901

State 8—Fronto-occipital II 10.64 .048 43.09 .021 −8.38 .882 −16.90 .042

Note: Statistical significance was derived using permutation testing and corrected for multiple comparisons as described in the Methods. *Significance
following multiple comparison correction at the p < .05 level and **Significance at the p < .001 level.
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dynamics across networks. Using gene expression data from the Allen

Atlas (Hawrylycz et al., 2012), we identified the level of ZDHHC9,

FMR1 and FOXP2 gene expression within each of the 68 cortical par-

cels. For each network, we could then calculate a gene expression

value across the top 20 most active parcels in that state. We then

used a null distribution, derived using a permutation procedure to

identify the likelihood of this expression value, relative to chance. This

approach is described in the Methods section.

We used a Spearman's rank-order correlation to test for a statisti-

cal association between the magnitude of the gene expression effect,

indexed by the p-value of gene expression in each state from our per-

muted distributions, and the magnitude of the group difference, inde-

xed by the p-value of the group difference on each temporal measure

(from the group-level permutation testing). Because the p-values

were derived from permuted distributions they provided a measure of

the size of the gene expression effect and group difference in each

state, allowing us to test for a relationship between the extent to

which network dynamics distinguished the groups and the level of

gene expression. Overall, this analysis approach, therefore, allowed us

to first identify the level of gene expression in each state, and to then

test the association between these gene expression levels and the

magnitude of group differences in neuronal dynamics across

networks.

The resting-state data showed a significant association between

the magnitude of dynamic neural differences and ZDHHC9 gene

expression. The group difference in fractional occupancy, number of

occurrences, and mean interval length was strongly associated with

ZDHHC9 gene expression across states (fractional occupancy:

rs = .738, p = .046; number of occurrences: rs = .857, p = .012; mean

interval length: rs = .833, p = .0154). This demonstrated that these

dynamic properties of resting state networks were significantly associ-

ated with the strength of ZDHHC9 expression, whereby higher gene

expression was associated with a larger impact of the mutation on the

dynamic properties across networks. Mean lifetime was not signifi-

cantly associated with ZDHHC9 gene expression (mean lifetime:

rs = .452, p = .267).

We further tested whether these same relationships were present

with two other genes, FMR1 and FOXP2, associated with overlapping

phenotypes. There was no significant relationship between the profile

of FMR1 expression and any of the neural measures (fractional occu-

pancy: rs = .262, p = .536; number occurrences: rs = 0, p = 1; mean

lifetime: rs = .262, p = .536; mean interval length: rs = 0, p = 1). The

group difference in number of occurrences was significantly associ-

ated with FOXP2 gene expression (rs = .762, p = .037) but not with

fractional occupancy, mean lifetime or mean interval length (fractional

occupancy: rs = .119, p = .793; mean lifetime: rs = −.0238, p = .977;

mean interval length: rs = .691, p = .0694). This provides some evi-

dence that another gene associated with a language disorder is also

related to these dynamic measures (FOXP2), but not another gene

identified as a common monogenic cause of intellectual disabil-

ity (FMR1).

In the oddball data, none of the group differences was significantly

related to ZDHHC9 or FMR1 expression (ZDHHC9: fractional occu-

pancy: rs = .024, p = .977; number of occurrences: rs = 0, p = 1; mean

lifetime: rs = −.167, p = .703; mean interval length: rs = .286, p = .501;

FMR1: fractional occupancy: rs = .595, p = .132; number of occur-

rences: rs = .405, p = .327; mean lifetime: rs = 0, p = 1; mean interval

length: rs = .309, p = .462). The group difference in mean lifetime was

significantly associated with FOXP2 gene expression (mean life time:

rs = −.738, p = .046) but not with fractional occupancy, number of

occurrences or mean interval length (fractional occupancy: rs = −.143,

p = .752; number of occurrences: rs = −.024, p = .977; mean interval

length: rs = −.240, p = .582). Figure 4 presents the ZDHHC9 gene

expression results across the resting state and oddball task data.

In sum, we tested the association between group differences in

dynamic network properties and gene expression across the resting

state and oddball task networks. At rest the size of the group

F IGURE 3 The eight states inferred from the oddball task data.
Each map shows the partial correlation between each state time
course and the parcel-wise amplitude envelopes. The partial
correlation values have been thresholded to show correlations above
60–80% of the maximum correlation for each state. The colour maps
are normalised relative to all states
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difference in fractional occupancy, number of occurrences, and mean

interval length was systematically associated with the level of

ZDHHC9 gene expression. There were also some associations

between these metrics and FOXP2 expression. However, there were

no links with FMR1 expression.

4 | DISCUSSION

Little is known about variability in dynamic network properties or the

underlying physiological mechanisms that drive this variability. In the

current study, we sought to characterise the dynamics of functional

connectivity networks in individuals with the ZDHHC9 gene mutation,

a single-gene developmental disorder associated with a homogenous

phenotype of intellectual, language, and attentional impairments. We

examined network dynamics using a Hidden Markov Model (HMM), a

data-driven method that captures functional networks on a millisec-

ond timescale and quantifies their dynamics. At rest, an early visual

network was active for a significantly longer proportion of time in

individuals with the ZDHHC9 mutation than in age-matched controls.

Importantly, across all resting-state networks the size of the mutation

effect was strongly associated with the expression profile of the gene:

F IGURE 4 The association between the magnitude of the group difference in network dynamics and the level of ZDHHC9 gene expression,
across all temporal measures and states. The states are ranked by the level of gene expression on the y-axis, in which states with smaller p-values
derived from the permutation testing have higher levels of gene expression. The x-axis shows the p-value of the group difference in network
dynamics on each temporal measure, whereby smaller p-values denote larger group differences. The plot for the resting state data demonstrates
that the extent to which the dynamic properties differed between groups was associated with a larger magnitude of gene expression across all

states. There was no significant across-state association between gene expression and dynamic network group differences in the oddball task
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the greater the gene expression within a particular network, the stron-

ger the impact of the mutation on the dynamics of that network. This

was not true for another gene commonly associated with intellectual

disability, FMR1. However, there were weaker associations with the

expression profile of FOXP2, a gene associated with language impair-

ment (Vargha-Khadem et al., 2005). During the auditory oddball task,

there were no consistent group effects that survived multiple compar-

isons correction, and there was no consistent correspondence

between network dynamics and gene expression. In summary, in

resting-state MEG data we identified the impact of the gene mutation

on the dynamics of specific networks, and crucially, the graded impact

of this mutation was predicted by the level of gene expression across

networks. However, these gene effects were not reliably detected in

task-positive data.

At rest, the higher proportion of time spent in the early visual net-

work in the ZDHHC9 group suggested less dynamic regulation of

transitioning into and out of this brain state than in control partici-

pants. One interpretation of this finding is that slower engagement of

certain functional networks at rest may present a constraint on

higher-level cognitive abilities (Basten, Hilger, & Fiebach, 2015). A

growing number of studies have argued that the rapid and transient

organisation of multiple network configurations at rest necessarily

provides the flexibility to adapt to the changing demands of cognitive

processing, by providing a continuous “dynamic repertoire” of states

to quickly engage the optimal network configuration for a given task

(e.g., Bressler & Tognoli, 2006; Deco, Jirsa, & McIntosh, 2011).

Aligning with this, recent work by Schultz and Cole (2016) observed

that smaller changes in functional connectivity patterns between rest

and distinct tasks correlated with higher levels of fluid intelligence.

Given the intellectual difficulties in individuals with the ZDHHC9 gene

mutation (Baker et al., 2015), it is plausible that slower dynamic transi-

tions between resting state networks may constrain the emergence of

higher level cognitive abilities through reduced efficiency in coordi-

nating relevant network configurations (e.g., Hearne, Mattingley, &

Cocchi, 2016; Song et al., 2008; van den Heuvel, Stam, Kahn, &

Hulshoff Pol, 2009).

However, it is notable that the ZDHHC9 and control group were

only distinguishable on the resting-state dynamics of this early visual

network, rather than more distributed frontoparietal or temporal net-

works which we may have expected to mediate the intellectual and

language difficulties in the disorder (e.g., Langeslag et al., 2013).

Although functional variations in the occipital cortex have been linked

to variability in intelligence (Jung & Haier, 2007) there is weak meta-

analytic support for this view (Basten et al., 2015). A plausible inter-

pretation for the present study is that these sensory spatiotemporal

patterns of activity were more stable across participants (Lee &

Frangou, 2017; Moussa et al., 2012), allowing more reliable measure-

ment of between-group differences in temporal dynamics. The rela-

tionship between visual network connectivity and performance across

varying language, working memory and reasoning tasks (Schultz &

Cole, 2016) suggests that early visual network activation may reflect

nonspecific engagement in the attentional demands of the study.

Increased alpha power in the early visual state in the ZDHHC9

group could have also contributed to this group difference, which is a

possibility we cannot rule out in the present study. However, we do

not think this drives the observed group difference. First, we may

have expected gross disparities in alpha power to cause more ubiqui-

tous effects across states, but the observed group difference was spe-

cific: A higher proportion of time spent in the early visual state in

ZDHHC9 than control participants. Second, our methods normalised

within participants to derive the dynamic measures, meaning overall

basic differences between the groups (such as in amplitude differ-

ences driven by alpha power) were controlled for in the group com-

parisons. Third, it is of note that ZDHHC9 expression is higher in

primary visual cortex than in other neocortical areas during two

important developmental phases: fetal mid-gestation and adolescence

(Kang et al., 2011; hbatlas.org). This provides some evidence for spa-

tiotemporal specificity of ZDHHC9 loss of function impacting on neu-

rophysiological function and the development of visual systems. As

such, whilst we cannot rule out potential confounders in the observa-

tion of this effect in the early visual state, the slower dynamics may

nonetheless be informative about the properties of resting-state net-

works in this disorder.

An important advance in the current study was our demonstration

that the integrity of network dynamics at rest strongly overlap with

regional differences in ZDHHC9 gene expression, and to a lesser

extent FOXP2 expression. We predicted that state dynamics would be

most altered in regions of elevated gene expression, with these

regionally specific abnormalities potentially arising due to reduced

palmitoylation and postsynaptic dysfunction (Fukata & Fukata, 2010;

El-Husseini et al., 2000a, 2000b). Our resting state results strongly

aligned with this expectation: At rest the magnitude of group differ-

ences in dynamic network properties were associated with the level

of ZDHHC9 gene expression across networks, suggesting that higher

expression of the ZDHHC9 mutation has a relatively direct effect on

neuronal dynamics. The significantly elevated levels of ZDHHC9 gene

expression in resting-state networks showing case–control differ-

ences, suggest that reduced capacity for activity-dependent postsyn-

aptic change, resulting from reduced palmitoylation, may be a

contributory mechanism to slower network dynamics (El-Husseini

et al., 2000a, 2000b).

In addition to testing the link between ZDHHC9 gene expression

and the magnitude of between-group dynamic differences across net-

works, we sought to understand the specificity of this link by testing

this association with two further genes associated with phenotypes

overlapping with that of ZDHHC9: FMR1 and FOXP2. The partial over-

lap between the magnitude of group differences in network dynamics

and the expression profile of FOXP2, but not FMR1, suggests that this

gene-brain relationship reflects disruption to a molecular pathway rel-

evant to the language impairment profile that our participants demon-

strate (Baker et al., 2015). To extend these observations, future

studies could investigate network dynamics in individuals with vari-

ants in FOXP2, and variants in other genes with clearly defined synap-

tic functions and converging phenotypes (e.g., GRIN2A). Parallel

investigations in non-human experimental models are needed to
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establish a fully mechanistic account. Importantly, the current study

therefore provides only proof-of-principle of this methodological

approach and the relationship between gene expression and neuronal

dynamics. Future studies with more heterogeneous groups and signifi-

cantly larger sample sizes are necessary to assess how different genes

are differentially related to network dynamics, and the pathway

between these gene-brain relationships and variation in phenotype.

There was a striking difference between the resting and oddball

data, in that there was no association between ZDHHC9 gene expres-

sion and network dynamics in the oddball task. One possibility is that

mutation effects do affect task network dynamics, but that the cur-

rent sample had insufficient power to detect them. For example, we

observed differences in the bilateral temporal and frontooccipital net-

work dynamics between the control and ZDHHC9 group. Whilst these

effects were not statistically significant, they align with findings in

other populations with partially overlapping phenotypes of language

impairment who have also shown reduced sensitivity to linguistic and

nonlinguistic auditory contrasts (Davids et al., 2011), which are in turn

predictive of subsequent language development (Port et al., 2016).

Furthermore, weaker functional integration in static language-relevant

connectivity networks is also a cardinal feature of children with

Rolandic epilepsy and comorbid language delays, features observed in

the ZDHHC9 sample (Besseling et al., 2013; McGinnity et al., 2017).

The reason why these effects were not robust enough to survive our

multiple comparisons correction might be linked to the small number

of cases within our sample. However, this would not explain the com-

plete lack of relationship with gene expression in the oddball data,

suggesting that this is not simply a power issue. A second alternative

is that the measures of neuronal dynamics used here are not the most

sensitive for task-positive datasets. There may be dynamic network

properties, such as the temporal overlap of activation between states,

which we did not detect here but are nevertheless susceptible to dis-

ruption from postsynaptic dysfunction. In essence, different neuronal

mechanisms could reflect the behavioural phenotype that we observe,

but these are not directly influenced by the known aetiology of

the ZDHHC9 mutation. Importantly, these questions also point to the

need for future work to test the correspondence between the

dynamic measures used here and standard “stationary” network ana-

lyses and electrophysiological measures, to assess how dynamic mea-

sures extend our understanding of behavioural phenotypes.

There are important broader limitations to the current study. First,

the sample size of studies of single-gene mutations is inherently lim-

ited due to the rarity of these disorders. The present study included

all known UK families diagnosed with ZDHHC9-associated XLID at

the time of recruitment, but the small sample size necessitates replica-

tion of these results in a larger sample. However, similar studies of

small groups with a common aetiology have generated important

hypotheses about neural and genetic pathways to a disorder, such as

Fragile X syndrome (Diersson & Ramakers, 2006; van der Molen,

Stam, & van der Molen, 2014). The present study further adds

dynamic network irregularities as neurobiology-relevant metrics asso-

ciated with cognitive and/or language impairment.

Second, the control group was age-matched to the ZDHHC9 group

but had age-typical IQ and language abilities. It is therefore unclear

whether the observed dynamic network differences are specifically

tied to the combined phenotype of low IQ and language impairment,

the aetiology of ZDHHC9 mutations, or reflect more general correlates

of low cognitive ability. The partial overlap between network dynam-

ics and FOXP2 expression suggests that the dynamic network differ-

ences may reflect disruptions to molecular pathways relevant to

language impairment phenotypes, but not specific to the ZDHHC9

gene. Rather, different genes may differentially affect network

dynamics through their impact on neuronal excitability, but the cur-

rent study cannot distill the specificity of these effects to the ZDHHC9

mutation. It is important for future studies to explore dynamic func-

tional connectivity in individuals with different aetiologies but mat-

ched on partially or fully overlapping phenotypes, to draw firmer

conclusions about the relationship between causal pathways, dynamic

network properties and behavioural phenotypes. In particular, relating

dynamic network properties to individual differences in cognition dur-

ing development may assess whether dynamic network irregularities

present a risk factor for specific profiles of cognitive deficits.

Whilst there is a strong tradition of examining the impact of

genetic effects on static functional connectivity networks through

either heritability (Colclough et al., 2017; Demuru et al., 2017; Fu

et al., 2015; Posthuma et al., 2005) or associations between gene

expression and amplitude envelope coordination in resting-state activ-

ity (Gordon, Devaney, Bean, & Vaidya, 2015; Jamadar et al., 2013;

Wang et al., 2015), there remains a scarcity of work examining genetic

effects on the fast transient dynamics of functional connectivity net-

works. Investigating network dynamics is particularly compelling to

understand how gene expression perturbs communication within

large scale brain networks, and downstream impacts on cognitive abil-

ities, due to the profound impact of genetics on synaptic signalling

(e.g., Forest et al., 2017; Meda et al., 2014; Richiardi et al., 2015;

Whitaker et al., 2016; Willemsen et al., 2013). For the first time we

were able to demonstrate proof-of-concept that dynamic connectivity

profiles of individuals with a gene mutation are significantly altered

and, crucially, that the extent of this alteration is strongly associated

with the expression profile of the gene. Critically, we have demon-

strated a valuable method for future work, which should seek to iden-

tify the nature of brain network dynamics and their role in the

emergence of higher-level cognitive abilities over development.
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