22 research outputs found

    The application and sustainable development of coral in traditional medicine and its chemical composition, pharmacology, toxicology, and clinical research

    Get PDF
    This review discusses the variety, chemical composition, pharmacological effects, toxicology, and clinical research of corals used in traditional medicine in the past two decades. At present, several types of medicinal coral resources are identified, which are used in 56 formulas such as traditional Chinese medicine, Tibetan medicine, Mongolian medicine, and Uyghur medicine. A total of 34 families and 99 genera of corals are involved in medical research, with the Alcyoniidae family and Sarcophyton genus being the main research objects. Based on the structural types of compounds and the families and genera of corals, this review summarizes the compounds primarily reported during the period, including terpenoids, steroids, nitrogen-containing compounds, and other terpenoids dominated by sesquiterpene and diterpenes. The biological activities of coral include cytotoxicity (antitumor and anticancer), anti-inflammatory, analgesic, antibacterial, antiviral, immunosuppressive, antioxidant, and neurological properties, and a detailed summary of the mechanisms underlying these activities or related targets is provided. Coral toxicity mostly occurs in the marine ornamental soft coral Zoanthidae family, with palytoxin as the main toxic compound. In addition, nonpeptide neurotoxins are extracted from aquatic corals. The compatibility of coral-related preparations did not show significant acute toxicity, but if used for a long time, it will still cause toxicity to the liver, kidneys, lungs, and other internal organs in a dose-dependent manner. In clinical applications, individual application of coral is often used as a substitute for orthopedic materials to treat diseases such as bone defects and bone hyperplasia. Second, coral is primarily available in the form of compound preparations, such as Ershiwuwei Shanhu pills and Shanhu Qishiwei pills, which are widely used in the treatment of neurological diseases such as migraine, primary headache, epilepsy, cerebral infarction, hypertension, and other cardiovascular and cerebrovascular diseases. It is undeniable that the effectiveness of coral research has exacerbated the endangered status of corals. Therefore, there should be no distinction between the advantages and disadvantages of listed endangered species, and it is imperative to completely prohibit their use and provide equal protection to help them recover to their normal numbers. This article can provide some reference for research on coral chemical composition, biological activity, chemical ecology, and the discovery of marine drug lead compounds. At the same time, it calls for people to protect endangered corals from the perspectives of prohibition, substitution, and synthesis

    Identification of Hyperspectral Characteristics of The Main Plants in \u3ci\u3eSeriphidium transiliense\u3c/i\u3e Desert Grassland

    Get PDF
    Ground hyperspectral images of sericite–Artemisia desert grassland in different seasons were obtained by a soc710 VP imaging spectrometer. Analysis of variance was used to extract the main species Seriphidium transiliense, Ceratocarpus arenarius, and Petrosimonia sibirica and the spectral characteristic parameters and vegetation indices of bare land in different seasons. On this basis, Fisher discriminant analysis was used to divide the samples into a training set and test set according to a ratio of 7:3. The spectral characteristic parameters and vegetation indices were used to identify the three main plants and bare land. Results showed that under Fisher discriminant analysis, whether using the spectral characteristic parameters or vegetation indices, the identification model established by the vegetation indices had the best discrimination accuracy for the test set samples of S. transiliense, C. arenarius, P. sibirica and bare land. Although the total discrimination accuracy of the test set samples exceeded 80% in different seasons, the identification model established by the vegetation indices had the best discrimination, reaching 100.00%, 95.60%, 100.00% and 95.90%, respectively, and a total accuracy of 98.89%

    Control of zeolite microenvironment for propene synthesis from methanol

    Get PDF
    Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.We thank EPSRC (EP/P011632/1), the Royal Society, National Natural Science Foundation of China (21733011, 21890761, 21673076), and the University of Manchester for funding. We thank EPSRC for funding and the EPSRC National Service for EPR Spectroscopy at Manchester. A.M.S. is supported by a Royal Society Newton International Fellowship. We are grateful to the STFC/ISIS Facility, Oak Ridge National Laboratory (ORNL) and Diamond Light Source (DLS) for access to the beamlines TOSCA/MAPS, VISION and I11/I20, respectively. We acknowledge Dr. L. Keenan for help at I20 beamline (SP23594-1). UK Catalysis Hub is kindly thanked for resources and support provided via our membership of the UK Catalysis Hub Consortium and funded by EPSRC grant: EP/R026939/1, EP/R026815/1, EP/R026645/1, EP/R027129/1 or EP/M013219/1 (biocatalysis). We acknowledge the support of The University of Manchester’s Dalton Cumbrian Facility (DCF), a partner in the National Nuclear User Facility, the EPSRC UK National Ion Beam Centre and the Henry Royce Institute. We recognise Dr. R. Edge and Dr. K. Warren for their assistance during the 60Co γ-irradiation processes. We thank Prof. A. Jentys from the Technical University of Munich for the measurement of the INS spectrum of iso-butene. We thank C. Webb, E. Enston and G. Smith for help with GC–MS; Dr. L. Hughes for help with SEM and EDX; M. Kibble for help at TOSCA/MAPS beamlines. Computing resources (time on the SCARF compute cluster for some of the CASTEP calculations) was provided by STFC’s e-Science facility. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by ORNL. The computing resources at ORNL were made available through the VirtuES and the ICE-MAN projects, funded by Laboratory Directed Research and Development programme and Compute and Data Environment for Science (CADES

    Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network

    Get PDF
    Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries

    NAAS: Neural Accelerator Architecture Search

    No full text

    Water Environmental Capacity Calculated Based on Point and Non-Point Source Pollution Emission Intensity under Water Quality Assurance Rates in a Tidal River Network Area

    No full text
    A mathematical model for simulating hydrodynamics and pollutants migration in a tidal river network was constructed, which takes the temporal and spatial distribution of rainfall runoff and non-point pollutants into consideration. Under the design hydrologic conditions of a typical hydrological year, the daily concentration change process for the control section is obtained. Aiming at the uncertainty of hydrology and water quality parameters such as flow direction, flow rate and concentration change in tidal river network area, a statistical analysis method is used to obtain the maximum allowable concentration of pollutants in the control section under the condition of the water quality standard assurance rate of. Then, a formula for calculating the pollutions emission intensity of point and non-point sources is derived. The method was applied to the pollution source control in a typical region like Taihu in China

    Allocating Water Environmental Capacity to Meet Water Quality Control by Considering Both Point and Non-Point Source Pollution Using a Mathematical Model: Tidal River Network Case Study

    No full text
    Based on the principles of fairness and feasibility, a nonlinear optimization allocation method for pollutants was developed based on controlled section water quality standards, considering the synergetic influence of point and surface sources. The maximum allowable emission of pollutants from point and surface sources were taken as the objective function. The water quality attainment rate of controlled sections, the control requirements of pollution sources, and technical parameters of pollution control engineering were taken as constraints. A nonlinear optimization allocation model was established, and a genetic algorithm was used to solve the problem. As an example, the model was applied to a certain area in the Taihu Lake basin, southern Jiangsu province, China. The analysis results showed that the annual number of days for ammonia-nitrogen and total phosphorus meeting the standard were 334 and 332 days, respectively, under maximum allowable emissions for each pollutant, and the water quality compliance rates of the control section were 91.5% and 91%, respectively. The ammonia-nitrogen and total phosphorus concentrations in the controlled section achieved related water quality compliance rate targets of 90%. These all met the water quality compliance rate requirements of the control section. The results indicate that this method reflects the feasibility of optimizing the total allocation results systematically and intuitively, overcomes the insufficiency in the feasibility of the optimized allocation method, and provides effective and reliable technical support for control and management of the total pollutant amount based on water quality improvement

    Intranasal Delivery of Gene-Edited Microglial Exosomes Improves Neurological Outcomes after Intracerebral Hemorrhage by Regulating Neuroinflammation

    No full text
    Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood–brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes

    Additional file 1 of Metagenomic sequencing reveals altered gut microbial compositions and gene functions in patients with non-segmental vitiligo

    No full text
    Additional file 1: Supplementary Table 1. Summary of statistics of α-diversity. Supplementary Table 2.  Summary of statistics of β-diversity. Supplementary Table 3.  Summary of statistics of different gut microbiome taxonomy between control and vitiligo. Supplementary Table 4.  The correlation between different microbial species and VIDA score. Supplementary Table 5. Analysis of bacterial taxa by using LEfSe analyses. Supplementary Table 6.  Analysis of KEGG pathway. Supplementary Table 7.   Analysis of metabolic pathways. Supplementary Table 8.  Microbial species selected based on nest cross-validation model
    corecore