18 research outputs found
An Overview on IEEE 802.11bf: WLAN Sensing
With recent advancements, the wireless local area network (WLAN) or wireless
fidelity (Wi-Fi) technology has been successfully utilized to realize sensing
functionalities such as detection, localization, and recognition. However, the
WLANs standards are developed mainly for the purpose of communication, and thus
may not be able to meet the stringent requirements for emerging sensing
applications. To resolve this issue, a new Task Group (TG), namely IEEE
802.11bf, has been established by the IEEE 802.11 working group, with the
objective of creating a new amendment to the WLAN standard to meet advanced
sensing requirements while minimizing the effect on communications. This paper
provides a comprehensive overview on the up-to-date efforts in the IEEE
802.11bf TG. First, we introduce the definition of the 802.11bf amendment and
its formation and standardization timeline. Next, we discuss the WLAN sensing
use cases with the corresponding key performance indicator (KPI) requirements.
After reviewing previous WLAN sensing research based on communication-oriented
WLAN standards, we identify their limitations and underscore the practical need
for the new sensing-oriented amendment in 802.11bf. Furthermore, we discuss the
WLAN sensing framework and procedure used for measurement acquisition, by
considering both sensing at sub-7GHz and directional multi-gigabit (DMG)
sensing at 60 GHz, respectively, and address their shared features,
similarities, and differences. In addition, we present various candidate
technical features for IEEE 802.11bf, including waveform/sequence design,
feedback types, as well as quantization and compression techniques. We also
describe the methodologies and the channel modeling used by the IEEE 802.11bf
TG for evaluation. Finally, we discuss the challenges and future research
directions to motivate more research endeavors towards this field in details.Comment: 31 pages, 25 figures, this is a significant updated version of
arXiv:2207.0485
The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signalling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favours geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants do not display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
The transcriptional regulator JAZ8 interactswith the C2 protein from geminivirusesand limits the geminiviral infection in Arabidopsis
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.This work was supported by the Spanish Ministerio de Ciencia y Tecnología (PID2019-107657RB-C22) (ER-B), FEDER program (UMA20-FEDERJA-021) (AG-C), the Shanghai Center for Plant Stress Biology, the Chinese Academy of Sciences, and the Federal Ministry of Education and Research (BMBF) and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments (RL-D). TR-D was supported by a President's International Fellowship Initiative (PIFI) postdoctoral fellowship (No. 2016PB042) from the Chinese Academy of Sciences, the “Programa Juan de la Cierva” (IJCI-2017-33367) from the MCIN and FEDER program UMA20-FEDERJA-132 by AEI and by “ERDF A way of making Europe,” by the “European Union.”
Funding for Open Access charge: Universidad de Málaga / CBUA
An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes
In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which includes the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid and flavonoids) and defense response chemicals (tannins and phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be regarded as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes
The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.supportedby the Spanish Ministerio deCiencia y Tecnología (PID2019‐107657RB‐C22) (ER‐B), FEDERprogram (UMA20‐FEDERJA‐021) (AG‐C), the Shanghai Centerfor Plant Stress Biology, the Chinese Academy of Sciences, andthe Federal Ministry of Education and Research (BMBF) and theBaden‐Württemberg Ministry of Science as part of the Ex-cellence Strategy of the German Federal and State Governments(RL‐D). TR‐D was supported by a President's International Fel-lowship Initiative (PIFI) postdoctoral fellowship (No. 2016PB042)from the Chinese Academy of Sciences, the“Programa Juan dela Cierva”(IJCI‐2017‐33367) from the MCIN and FEDER programUMA20‐FEDERJA‐132 by AEI and by“ERDF A way of makingEurope,”by the“European Union.”Funding for Open Accesscharge: Universidad de Málaga / CBUAPeer reviewe
MetaPro: a computational metaphor processing model for text pre-processing
Metaphor is a special linguistic phenomenon, challenging diverse natural language processing tasks. Previous works focused on either metaphor identification or domain-specific metaphor interpretation, e.g., interpreting metaphors with a specific part-of-speech, metaphors in a specific application scenario or metaphors with specific concepts. These methods cannot be used directly in everyday texts. In this paper, we propose a metaphor processing model, termed MetaPro, which integrates metaphor identification and interpretation modules for text pre-processing. To the best of our knowledge, this is the first end-to-end metaphor processing approach in the present field. MetaPro can identify metaphors in a sentence on token-level, paraphrasing the identified metaphors into their literal counterparts, and explaining metaphoric multi-word expressions. It achieves state-of-the-art performance in the evaluation of sub-tasks. Besides, the model can be used as a text pre-processing method to support downstream tasks. We examine the utility of MetaPro text pre-processing on a news headline sentiment analysis task. The experimental results show that the performance of sentiment analysis classifiers can be improved with the pre-processed texts.Agency for Science, Technology and Research (A*STAR)This research/project is supported by A*STAR under its Industry Alignment Fund, Singapore (LOA Award I1901E0046)
Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review
Nowadays, pesticides are widely used in preventing and controlling the diseases and pests of crop, but at the same time pesticide residues have brought serious harm to human’s health and the environment. It is an important subject to study microbial degradation of pesticides in soil environment in the field of internationally environmental restoration science and technology. This paper summarized the microbial species in the environment, the study of herbicide and pesticides degrading bacteria and the mechanism and application of pesticide microbial degrading bacteria. Cypermethrin and other pyrethroid pesticides were used widely currently, while they were difficult to be degraded in the natural conditions, and an intermediate metabolite, 3-phenoxy benzoic acid would be produced in the degradation process, causing the secondary pollution of agricultural products and a series of problems. Taking it above as an example, the paper paid attention to the degradation process of microorganism under natural conditions and factors affecting the microbial degradation of pesticide. In addition, the developed trend of the research on microbial degradation of pesticide and some obvious problems that need further solution were put forward