64 research outputs found

    AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling

    Get PDF
    Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways

    Genome Characterization and Potential Risk Assessment of the Novel SARS-CoV-2 Variant Omicron (B.1.1.529)

    Get PDF
    As the novel coronavirus SARS-CoV-2 spread around the world, multiple waves of variants emerged, thus leading to local or global population shifts during the pandemic. A new variant named Omicron (PANGO lineage B.1.1.529), which was first discovered in southern Africa, has recently been proposed by the World Health Organization to be a Variant of Concern. This variant carries an unusually large number of mutations, particularly on the spike protein and receptor binding domain, in contrast to other known major variants. Some mutation sites are associated with enhanced viral transmission, infectivity, and pathogenicity, thus enabling the virus to evade the immune protective barrier. Given that the emergence of the Omicron variant was accompanied by a sharp increase in infection cases in South Africa, the variant has the potential to trigger a new global epidemic peak. Therefore, continual attention and a rapid response are required to decrease the possible risks to public health

    Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection

    Get PDF
    Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection

    Avian Hepatitis E Virus ORF2 Protein Interacts with Rap1b to Induce Cytoskeleton Rearrangement That Facilitates Virus Internalization.

    Get PDF
    Avian hepatitis E virus (HEV) causes liver diseases and multiple extrahepatic disorders in chickens. However, the mechanisms involved in avian HEV entry remain elusive. Herein, we identified the RAS-related protein 1b (Rap1b) as a potential HEV-ORF2 protein interacting candidate. Experimental infection of chickens and cells with an avian HEV isolate from China (CaHEV) led to upregulated expression and activation of Rap1b both in vivo and in vitro. By using CaHEV capsid as mimic of virion to treat cell in vitro, it appears that the interaction between the viral capsid and Rap1b promoted cell membrane recruitment of the downstream effector Rap1-interacting molecule (RIAM). In turn, RIAM further enhanced Talin-1 membrane recruitment and retention, which led to the activation of integrin α5/β1, as well as integrin-associated membrane protein kinases, including focal adhesion kinase (FAK). Meanwhile, FAK activation triggered activation of downstream signaling molecules, such as Ras-related C3 botulinum toxin substrate 1 RAC1 cell division cycle 42 (CDC42), p21-activated kinase 1 (PAK1), and LIM domain kinase 1 (LIMK1). Finally, F-actin rearrangement induced by Cofilin led to the formation of lamellipodia, filopodia, and stress fibers, contributes to plasma membrane remodeling, and might enhance CaHEV virion internalization. In conclusion, our data suggested that Rap1b activation was triggered during CaHEV infection and appeared to require interaction between CaHEV-ORF2 and Rap1b, thereby further inducing membrane recruitment of Talin-1. Membrane-bound Talin-1 then activates key Integrin-FAK-Cofilin cascades involved in modulation of actin kinetics, and finally leads to F-actin rearrangement and membrane remodeling to potentially facilitate internalization of CaHEV virions into permissive cells. IMPORTANCE Rap1b is a multifunctional protein that is responsible for cell adhesion, growth, and differentiation. The inactive form of Rap1b is phosphorylated and distributed in the cytoplasm, while active Rap1b is prenylated and loaded with GTP to the cell membrane. In this study, the activation of Rap1b was induced during the early stage of avian HEV infection under the regulation of PKA and SmgGDS. Continuously activated Rap1b recruited its effector RIAM to the membrane, thereby inducing the membrane recruitment of Talin-1 that led to the activation of membrane α5/β1 integrins. The triggering of the signaling pathway-associated Integrin α5/β1-FAK-CDC42&RAC1-PAK1-LIMK1-Cofilin culminated in F-actin polymerization and membrane remodeling that might promote avian HEV virion internalization. These findings suggested a novel mechanism that is potentially utilized by avian HEV to invade susceptible cells

    Chicken Organic Anion-Transporting Polypeptide 1A2, a Novel Avian Hepatitis E Virus (HEV) ORF2-Interacting Protein, Is Involved in Avian HEV Infection

    Get PDF
    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease in chickens. Due to the absence of a highly effective cell culture system, there are few reports about the interaction between avian HEV and host cells. In this study, organic anion-transporting polypeptide 1A2 (OATP1A2) from chicken liver cells was identified to interact with ap237, a truncated avian HEV capsid protein spanning amino acids 313 to 549, by a glutathione S-transferase (GST) pulldown assay. GST pulldown and indirect enzyme-linked immunosorbent assays (ELISAs) further confirmed that the extracellular domain of OATP1A2 directly binds with ap237. The expression levels of OATP1A2 in host cells are positively correlated with the amounts of ap237 attachment and virus infection. The distribution of OATP1A2 in different tissues is consistent with avian HEV infection in vivo. Finally, when the functions of OATP1A2 in cells are inhibited by its substrates or an inhibitor or blocked by ap237 or anti-OATP1A2 sera, attachment to and infection of host cells by avian HEV are significantly reduced. Collectively, these results displayed for the first time that OATP1A2 interacts with the avian HEV capsid protein and can influence viral infection in host cells. The present study provides new insight to understand the process of avian HEV infection of host cells

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Data-Based Analysis of Environmental Attractiveness towards Low-Carbon Development in Seaside Cities

    No full text
    Data-based technologies have been implemented in urban planning projects and environmental sciences. However, in the field of the environmental attractiveness analysis of seaside urban space, these technologies have not been fully studied. This paper critically assesses the attractiveness using data-based technologies with a focus on Chinese seaside cities’ low-carbon development. The analysis addresses the research question: How to use data-based technologies and their instruments to analyze environmental attractiveness of seaside cities towards low-carbon development? Methodologies include a case study of Dalian (China), field investigation, observation, and heatmapping. Results indicate that data-based technologies can support analysis of behavior and activity interests of inhabitants, as well as heatmapping with attractiveness consideration. The results provide a rational foundation for decision making during urban planning of seaside cities. Findings include insights and principles of planning seaside urban areas for smart sustainable development

    Data-Based Analysis of Environmental Attractiveness towards Low-Carbon Development in Seaside Cities

    No full text
    Data-based technologies have been implemented in urban planning projects and environmental sciences. However, in the field of the environmental attractiveness analysis of seaside urban space, these technologies have not been fully studied. This paper critically assesses the attractiveness using data-based technologies with a focus on Chinese seaside cities’ low-carbon development. The analysis addresses the research question: How to use data-based technologies and their instruments to analyze environmental attractiveness of seaside cities towards low-carbon development? Methodologies include a case study of Dalian (China), field investigation, observation, and heatmapping. Results indicate that data-based technologies can support analysis of behavior and activity interests of inhabitants, as well as heatmapping with attractiveness consideration. The results provide a rational foundation for decision making during urban planning of seaside cities. Findings include insights and principles of planning seaside urban areas for smart sustainable development

    B80 Fullerene: A Promising Metal-Free Photocatalyst for Efficient Converting CO2 to HCOOH

    No full text
    Developing photocatalysts with high efficiency and selectivity for CO 2 reduction is essential in the sight of both energy and environment. Through comprehensive density functional theory calculations, we have found that B 80 fullerene can be used as an excellent metal-free photocatalyst for reducing CO 2 to value-added chemicals in this report. Our results reveal that electron-deficient boron fullerene can effectively activate CO 2 (Lewis acid) through Lewis acid-base interactions on the three basic sites of B 80 (B 80 is an amphoteric molecule). The charge density difference analysis indicates that there are significant charge transfers between CO 2 and B 80 fullerene on the adsorption sites, which are responsible for the activations of CO 2. On the basis of calculating the adsorption energies of the possible products (CO, HCOOH, CH 2O, CH 3OH, and CH 4) on B 80 fullerene and the possible reaction pathways producing these products, the B 80 fullerene shows high efficiency and selectivity for producing HCOOH. The minimum |U lim| (0.18 V) of the reaction pathway to produce HCOOH and weaker binding of HCOOH on B 80 fullerene (the adsorption energy is -0.51 eV) than the counterparts of CO 2 both indicate that the formation and release of HCOOH from the B 80 fullerene surface is feasible. In all, our work provides useful information for searching for an excellent metal-free photocatalyst for CO 2 reduction. </p
    • …
    corecore