20 research outputs found

    Program Translation via Code Distillation

    Full text link
    Software version migration and program translation are an important and costly part of the lifecycle of large codebases. Traditional machine translation relies on parallel corpora for supervised translation, which is not feasible for program translation due to a dearth of aligned data. Recent unsupervised neural machine translation techniques have overcome data limitations by included techniques such as back translation and low level compiler intermediate representations (IR). These methods face significant challenges due to the noise in code snippet alignment and the diversity of IRs respectively. In this paper we propose a novel model called Code Distillation (CoDist) whereby we capture the semantic and structural equivalence of code in a language agnostic intermediate representation. Distilled code serves as a translation pivot for any programming language, leading by construction to parallel corpora which scale to all available source code by simply applying the distillation compiler. We demonstrate that our approach achieves state-of-the-art performance on CodeXGLUE and TransCoder GeeksForGeeks translation benchmarks, with an average absolute increase of 12.7% on the TransCoder GeeksforGeeks translation benchmark compare to TransCoder-ST

    Construction of a high-density genetic map for faba bean (Vicia faba L.) and quantitative trait loci mapping of seed-related traits

    Get PDF
    Faba bean (Vicia faba L.) is a valuable legume crop and data on its seed-related traits is required for yield and quality improvements. However, basic research on faba bean is lagging compared to that of other major crops. In this study, an F2 faba bean population, including 121 plants derived from the cross WY7×TCX7, was genotyped using the Faba_bean_130 K targeted next-generation sequencing genotyping platform. The data were used to construct the first ultra-dense faba bean genetic map consisting of 12,023 single nucleotide polymorphisms markers covering 1,182.65 cM with an average distance of 0.098 cM. The map consisted of 6 linkage groups, which is consistent with the 6 faba bean chromosome pairs. A total of 65 quantitative trait loci (QTL) for seed-related traits were identified (3 for 100-seed weight, 28 for seed shape, 12 for seed coat color, and 22 for nutritional quality). Furthermore, 333 candidate genes that are likely to participate in the regulation of seed-related traits were also identified. Our research findings can provide a basis for future faba bean marker-assisted breeding and be helpful to further modify and improve the reference genome

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Therapeutic effect of a MUC1-specific monoclonal antibody-drug conjugates against pancreatic cancer model

    No full text
    Abstract Background Pancreatic cancer is one of the most aggressive malignancies without effective targeted therapies. MUC1 has emerged as a potential common target for cancer therapy because it is overexpressed in a variety of different cancers including the majority of pancreatic cancer. However, there are still no approved monoclonal antibody drugs targeting MUC1 have been reported. Recently, we generated a humanized MUC1 antibody (HzMUC1) specific to the interaction region between MUC1-N and MUC1-C. In this study, we generated the antibody drug conjugate (ADC) by conjugating HzMUC1 with monomethyl auristatin (MMAE), and examined the efficacy of HzMUC1-MMAE against the MUC1-positive pancreatic cancer in vitro and in vivo. Methods Western blot and immunoprecipitation were used to detect MUC1 in pancreatic cancer cells. MUC1 localization in pancreatic cancer cells was determined by confocal microscopy. HzMUC1 was conjugated with the monomethyl auristatin (MMAE), generating the HzMUC1-MMAE ADC. Colony formation assay and flow cytometry were used to assess the effects of the HzMUC1-MMAE cell viability, cell cycle progression and apoptosis. Capan-2 and CFPAC-1 xenograft model were used to test the efficacy of HzMUC1-MMAE against pancreatic cancer. Results HzMUC1 antibody binds to MUC1 on the cell surface of pancreatic cancer cells. HzMUC1-MMAE significantly inhibited cell growth by inducing G2/M cell cycle arrest and apoptosis in pancreatic cancer cells. Importantly, HzMUC1-MMAE significantly reduced the growth of pancreatic xenograft tumors by inhibiting cell proliferation and enhancing cell death. Conclusion Our results indicate that HzMUC1-ADC is a promising novel targeted therapy for pancreatic cancer. HzMUC1-ADC should also be an effective drug for the treatment of different MUC1-positive cancers

    Transcriptome Profiling of Human Ulcerative Colitis Mucosa Reveals Altered Expression of Pathways Enriched in Genetic Susceptibility Loci

    No full text
    <div><p>Human colonic mucosa altered by inflammation due to ulcerative colitis (UC) displays a drastically altered pattern of gene expression compared with healthy tissue. We aimed to understand the underlying molecular pathways influencing these differences by analyzing three publically-available, independently-generated microarray datasets of gene expression from endoscopic biopsies of the colon. Gene set enrichment analysis (GSEA) revealed that all three datasets share 87 gene sets upregulated in UC lesions and 8 gene sets downregulated (false discovery rate <0.05). The upregulated pathways were dominated by gene sets involved in immune function and signaling, as well as the control of mitosis. We applied pathway analysis to genotype data derived from genome-wide association studies (GWAS) of UC, consisting of 5,584 cases and 11,587 controls assembled from eight European-ancestry cohorts. The upregulated pathways derived from the gene expression data showed a highly significant overlap with pathways derived from the genotype data (33 of 56 gene sets, hypergeometric <i>P</i> = 1.49×10<sup>–19</sup>). This study supports the hypothesis that heritable variation in gene expression as measured by GWAS signals can influence key pathways in the development of disease, and that comparison of genetic susceptibility loci with gene expression signatures can differentiate key drivers of inflammation from secondary effects on gene expression of the inflammatory process.</p></div

    A comprehensive multiplex PCR based exome-sequencing assay for rapid bloodspot confirmation of inborn errors of metabolism

    No full text
    Abstract Background Tandem mass spectrometry (MS MS) and simple fluorometric assays are currently used in newborn screening programs to detect inborn errors of metabolism (IEM). The aim of the study was to evaluate the clinical utility of exome sequencing as a second tier screening method to assist clinical diagnosis of the newborn. Methods A novel PCR-exome amplification and re-sequencing (PEARS) assay was designed and used to detect mutations in 122 genes associated with 101 IEM. Newborn bloodspots positive by biochemical testing were analysed by PEARS assay to detect pathogenic mutations relevant to the IEM. Results In initial validation studies of genomic DNA samples, PEARS assay correctly detected 25 known mutations associated with 17 different IEM. Retrospective gene analysis of newborns with clinical phenylketonuria (PKU), identified compound heterozygote phenylalanine hydroxylase (PAH) gene mutations in eight of nine samples (89%). Prospective analysis of 211 bloodspots correctly identified the two true PKU samples, yielding positive and negative predictive values of 100%. Testing of 8 true positive MS MS samples correctly identified potentially pathogenic compound heterozygote genotypes in 2 cases of citrullinemia type 1 and one case each of methylmalonic acidemia, isobutyryl-CoA dehydrogenase deficiency, short chain acyl-CoA dehydrogenase deficiency and glutaric acid type II and heterozygous genotypes in 2 cases of autosomal dominant methioninemia. Analysis of 11 of 12 false positive MS MS samples for other IEM identified heterozygous carriers in 8 cases for the relevant genes associated with the suspected IEM. In the remaining 3 cases, the test revealed compound heterozygote mutations in other metabolic genes not associated with the suspected IEM, indicating a misinterpretation of the original MS MS data. Conclusions The PEARS assay has clinical utility as a rapid and cost effective second-tier test to assist the clinician to accurately diagnose newborns with a suspected IEM

    miR-199a-5p Reduces Chondrocyte Hypertrophy and Attenuates Osteoarthritis Progression via the Indian Hedgehog Signal Pathway

    No full text
    Osteoarthritis (OA), the most common type of arthritis, is an age-associated disease, characterized by the progressive degradation of articular cartilage, synovial inflammation, and degeneration of subchondral bone. Chondrocyte proliferation is regulated by the Indian hedgehog (IHH in humans, Ihh in animals) signaling molecule, which regulates hypertrophy and endochondral ossification in the development of the skeletal system. microRNAs (miRNAs, miRs) are a family of about 22-nucleotide endogenous non-coding RNAs, which negatively regulate gene expression. In this study, the expression level of IHH was upregulated in the damaged articular cartilage tissues among OA patients and OA cell cultures, while that of miR-199a-5p was the opposite. Further investigations demonstrated that miR-199a-5p could directly regulate IHH expression and reduce chondrocyte hypertrophy and matrix degradation via the IHH signal pathway in the primary human chondrocytes. The intra-articular injection of synthetic miR-199a-5p agomir attenuated OA symptoms in rats, including the alleviation of articular cartilage destruction, subchondral bone degradation, and synovial inflammation. The miR-199a-5p agomir could also inhibit the Ihh signaling pathway in vivo. This study might help in understanding the role of miR-199a-5p in the pathophysiology and molecular mechanisms of OA and indicate a potential novel therapeutic strategy for OA patients
    corecore