8 research outputs found

    The Effect of CM082, an Oral Tyrosine Kinase Inhibitor, on Experimental Choroidal Neovascularization in Rats

    No full text
    The aims of this study were to evaluate the effects of CM082 on the development of choroidal neovascularization (CNV) in a laser-induced CNV rat model and to determine the drug concentration in the ocular tissues. After the laser-induced CNV model was established in rats, CM082 was orally administered. The effects of CM082 on the CNV lesions were assessed using fundus fluorescein angiography (FFA), CNV histology, and retinal pigment epithelium- (RPE-) choroid-sclera eyecup analysis. The concentrations of CM082 in the plasma and eye tissues were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results of FFA, histology, and RPE-choroid-sclera eyecup analysis demonstrated that the CM082-treated (10 mg/kg/d or 30 mg/kg/d) rats exhibited significantly less neovascularization than did the control group. The total concentration of CM082 in the eyes (172.86 ± 57.11 ng/g) was similar to that in the plasma (196.87 ± 73.13 ng/ml). Within the eye, the concentrations of CM082 and its metabolites were highest in the retina-sclera. The orally administered CM082 thus effectively passed through the blood-retina barrier (BRB) to reach the retina in the Brown Norway rats. Therefore, at both 10 mg/kg/d and 30 mg/kg/d, CM082 was able to reduce CNV lesions in the laser-induced CNV rat model

    Circulating miRNAs as Potential Biomarkers of Age-Related Macular Degeneration

    No full text
    Backgroud: Age-related macular degeneration (AMD) is one of the leading causes of irreversible blindness of the elder people. This research was intended to demonstrate the different expression of microRNAs (miRNA) in AMD patients and whether they can be used as biomarkers for AMD. Methods: MiRNAs expression was measured by microarray of 6 AMD cases and 6 gender matched controls. In a larger-sample case-control study with 126 AMD cases and 140 controls, whole blood samples were detected for the differences of miRNA expression. Results: A total of 216 differentially expressed miRNAs (111 increased and 105 decreased miRNAs) were detected from circulating miRNA microarray. Expanded case-control study results showed that the expression of miR-27a-3p, miR-29b-3p and miR-195-5p was increased significantly. Moreover, the level of miR-27a is higher in patients with wet AMD compared to patients with dry AMD. All 3 miRNAs showed a potential diagnostic value for AMD. Conclusion: Circulating miRNA levels were significantly varied in AMD patients. Three miRNAs, miR-27a-3p, miR-29b-3p and the miR-195-5p, might be potential diagnostic biomarkers for AMD

    LncRNA MALAT1 Regulates miR-144-3p to Facilitate Epithelial-Mesenchymal Transition of Lens Epithelial Cells via the ROS/NRF2/Notch1/Snail Pathway

    No full text
    Diabetic cataract is a common complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a key event in the development of diabetic cataracts. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to be highly expressed in different tissues of diabetic patients. This study is aimed at investigating the function and mechanism of MALAT1 in the regulation of EMT in human LECs under high glucose conditions. MALAT1, α-smooth muscle actin (α-SMA), fibronectin (FN), and nuclear factor erythroid-derived 2-like 2 (NRF2) were highly expressed in the LECs of diabetic cataract patients and in the human LECs under high glucose conditions; meanwhile, the decreased expressions of E-cadherin and zonula occludens 1 (ZO-1) were detected. Knockdown of MALAT1 could significantly reduce ROS, prevent EMT, arrest S phase cell cycle, and suppress the expression of total NRF2 and its nucleus translocation in LECs. Furthermore, after NRF2 was knocked down, total NRF2, α-SMA, and FN in cells, and NRF2, Notch intracellular domain (NICD), and Snail were decreased in the nucleus. Using bioinformatics methods, we predicted that MALAT1 and NRF2 shared the same microRNA-144-3p (miR-144-3p) combining site. Luciferase reporter coupled with qRT-PCR assays revealed that miR-144-3p was a target of MALAT1, which was confirmed to downregulate miR-144-3p in the LECs. In addition, after transfection of miR-144-3p mimics or inhibitor, western blot assay demonstrated that miR-144-3p negatively regulated the expression of total NRF2, α-SMA, and FN in cells, and NRF2, NICD, and Snail in the nucleus without affecting Kelch-like ECH-associated protein 1 (KEAP1). Finally, we confirmed that transfection of shMALAT1 inhibited NRF2 expression, and its mediated EMT could be rescued by miR-144-3p inhibitor; transfection of pcDNA3.1-MALAT1 promoted NRF2 expression, and its mediated EMT could be reversed by miR-144-3p inhibitor. In summary, we demonstrate that MALAT1 regulates miR-144-3p to facilitate EMT of LECs via the ROS/NRF2/Notch1/Snail pathway
    corecore