69 research outputs found

    Effects of gap size, gap age, and bamboo Fargesia denudata on Abies faxoniana recruitment in South-western China

    Get PDF
    Aim of study: to study the effects of gap size, gap age and bamboo Fargesia denudata on natural regeneration of Abies faxoniana, both of which are the ubiquitous dominants in our research area.Area of study: subalpine coniferous forests in Wanglang Natural Reserve in Southwestern China.Material and Methods: 10 transect belts were randomly established, and a total of 97 gaps were recorded and used.Main results: (1) the number of bamboos with coverage of <17% significantly increased with increases of gap size and age, but the latter had little influence on the numbers of F. denudata with coverage of >17%. (2) F. denudata strongly inhibited A. faxoniana seedlings and saplings in small, young and old gaps, where the amount of A. faxoniana recruitment was relatively abundant, than in other types of gap. (3) The numbers of A. faxoniana seedlings in A-gaps, significantly decreased with the increases in gap size. However, in gaps where F. denudate was also present, A. faxoniana seedlings and saplings were insensitive to gap size or age. Research highlights: thick F. denudata would not be influenced by gap size or age. Because of the low occurrences of A. faxoniana seedlings and saplings, the negative effect of gap size, gap age and F. denudata on A. faxoniana recruitment was unclear.Key words: Abies faxoniana; Fargesia denudata; gap age; gap size; regeneration

    The interfacial engineering of metal electrodes for high-specific-energy and long-lifespan batteries

    Get PDF
    High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications. Metal electrodes with high specific capacity and low reduction potential are potential candidates for next-generation high-specific-energy batteries. Nevertheless, the stability of the metal electrode batteries is constantly suffered from the unstable interface issue during the plating/stripping process, such as dendrite formation, dynamic evolution of solid electrolyte interphase, and other accompanied side reactions. To solve these challenges, numerous researches have been intensively studied based on the interfacial engineering of metal electrodes, including electrode configuration optimization, interfacial chemistry regulation and solid–solid interface construction, and the recent progress is elaborately introduced in this paper. Nevertheless, the dendrite issues cannot be entirely prohibited in solid metal electrodes, which motivate the search for potential alternatives. Liquid-metal electrodes with completely reversible structural changes and high mass transfer rate are rendered as an effective approach to solve the dendrite problem. Therefore, the development of liquid metal electrode batteries is reviewed in this paper, in which the interfacial issues are explicated and some commendable achievements are summarized. In the end, the implementation of interfacial engineering and the development roadmap of the metal electrode batteries are prospected

    Predicting pharmacodynamic effects through early drug discovery with artificial intelligence-physiologically based pharmacokinetic (AI-PBPK) modelling

    Get PDF
    A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model links the concentration-time profile of a drug with its therapeutic effects based on the underlying biological or physiological processes. Clinical endpoints play a pivotal role in drug development. Despite the substantial time and effort invested in screening drugs for favourable pharmacokinetic (PK) properties, they may not consistently yield optimal clinical outcomes. Furthermore, in the virtual compound screening phase, researchers cannot observe clinical outcomes in humans directly. These uncertainties prolong the process of drug development. As incorporation of Artificial Intelligence (AI) into the physiologically based pharmacokinetic/pharmacodynamic (PBPK) model can assist in forecasting pharmacodynamic (PD) effects within the human body, we introduce a methodology for utilizing the AI-PBPK platform to predict the PK and PD outcomes of target compounds in the early drug discovery stage. In this integrated platform, machine learning is used to predict the parameters for the model, and the mechanism-based PD model is used to predict the PD outcome through the PK results. This platform enables researchers to align the PK profile of a drug with desired PD effects at the early drug discovery stage. Case studies are presented to assess and compare five potassium-competitive acid blocker (P-CAB) compounds, after calibration and verification using vonoprazan and revaprazan

    Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage

    Development of an image grating sensor for position measurement

    No full text
    In this research paper, a precision position-measurement system based on the image grating technique is presented. The system offers a better robustness and flexibility for 1D position measurement compared to a conventional optical encoder. It is equipped with an image grating attached to a linear stage as the target feature and a line scan camera as the stationary displacement reader. By measuring the position of the specific feature in the image and applying a subpixel image registration method, the position of the linear stage can be obtained. In order to improve the computational efficiency, the calculations for pattern correlation and subpixel registration are performed in the frequency domain. An error compensation method based on a lens distortion model is investigated and implemented to improve the measurement accuracy of the proposed system. Experimental data confirms the capability of the developed image grating system as ±0.3 µm measurement accuracy within a 50 mm range and ±0.2 µm measurement accuracy within a 25 mm range. By applying different optics, the standoff distance, measurement range, and resolution can be customized to conform to different precision measurement applications.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio

    A Method for Determining the Safe Thickness of Concrete Retaining Walls Based on Slab Structure Theory

    No full text
    The safe thickness of concrete retaining walls for curtain grouting on tunnel faces is an essential factor related to tunnel safety and grouting effects. In this research, the concrete retaining wall was simplified into a standard rectangular slab structure. The Rankine active earth pressure theory and the plastic hinge theory were used to analyze the lateral force of the concrete retaining wall. By deriving the safety-thickness equation of the concrete retaining wall, a quantitative criterion that can display the mechanism of the concrete retaining wall was obtained. The traditional empirical formula and Kalmykov formula had a particular connection with the method in this paper in determining the safe thickness of the concrete retaining wall. This was negatively related to the compressive (tensile) strength of the concrete and the groundwater level and positively associated with the buried depth of the tunnel. The conversion relationship between the traditional empirical formula and the theoretical formula was established, and the exact solution formula for the value of safety coefficient K0 was given. Finally, the rationality of the theoretical formula was verified by a field test, in novel work that provides a reference for similar projects

    Numerical Study of a Multibeam Klystron on the Milky Way High-Performance Computing Platform

    No full text
    • …
    corecore