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A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model
links the concentration-time profile of a drug with its therapeutic effects
based on the underlying biological or physiological processes. Clinical
endpoints play a pivotal role in drug development. Despite the substantial
time and effort invested in screening drugs for favourable pharmacokinetic
(PK) properties, they may not consistently yield optimal clinical outcomes.
Furthermore, in the virtual compound screening phase, researchers cannot
observe clinical outcomes in humans directly. These uncertainties prolong the
process of drug development. As incorporation of Artificial Intelligence (AI)
into the physiologically based pharmacokinetic/pharmacodynamic (PBPK)
model can assist in forecasting pharmacodynamic (PD) effects within the
human body, we introduce a methodology for utilizing the AI-PBPK platform
to predict the PK and PD outcomes of target compounds in the early drug
discovery stage. In this integrated platform, machine learning is used to
predict the parameters for the model, and the mechanism-based PD
model is used to predict the PD outcome through the PK results. This
platform enables researchers to align the PK profile of a drug with desired
PD effects at the early drug discovery stage. Case studies are presented to
assess and compare five potassium-competitive acid blocker (P-CAB)
compounds, after calibration and verification using vonoprazan and
revaprazan.
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GRAPHICAL ABSTRACT

Main steps used to predict PK and PD outcomes of the compounds. (Step 1) Use different AI related simulations to predict the compound’s ADME and
physiochemical properties. (Step 2) Predict PK outcomes using the PBPKmodel. (Step 3) PDmodels are used to predict how changes in drug concentrations
affect gastric acid secretion and gastric pH. E/E0 is the relative activity of H+/K+ ATPase by drug; ksec is the secretion rate constants for intra-gastric H+

concentration; kout is the elimination rate constant for intra-gastric H+ concentration; Hobs is the observed concentration of H+; I (Inhibition) is the current
antisecretory effect (or current pH level) of the drug; Imax is the maximum possible effect (or maximum pH level) of the drug can achieve; The term (Imax -I)
represents how far the current effect is from its maximum potential.

1 Introduction

Drug discovery and development is a long and intricate process.
It begins with identifying a biological target that can be affected by a
drug to change disease progression. After validating this target,
methods like virtual screening or high throughput screening (HTS)
are used to screen through vast compound libraries, pinpointing
‘hits’ that show some activity. These hits are then refined into ‘lead’
compounds. These optimized leads are tested in vitro and on
animals for safety and effectiveness checking. Essentially, drug
development follows a process of broad to fine screening. We are
now using the AI-PBPK platform to optimize the screening process
from virtual compounds to candidate. The platform predicts ADME
(Absorption, Distribution, Metabolism, Excretion) and
physicochemical characters of the compound, and continuously
predicts the human PK and PD outcomes of the drug candidate.
Implementing this methodology in the discovery process could
bring the clinical end points earlier and potentially lead to the
identification of high-quality drug candidates earlier, ultimately
reducing the timeline from target discovery to candidate selection.

PBPK modelling has become an essential component in the
process of drug discovery and development. Within these models,
established physiological characteristics and the ADME properties
of a compound are incorporated into mathematical equations to
predict drug behaviour in human body. The computational method
involving model-based pharmacology evaluation was employed to
determine the best range of PK, ADME and physicochemical
characteristics for a specific target (Chen EP and Michalski,
2021). As a web-based platform, B2O simulator® integrated PBPK
models to predict drug exposure, potential interactions with other
drugs and the likelihood of been bioequivalent with reference
compound (Zhang et al., 2021a; Zhang et al., 2021b; Li et al.,
2022; Li J et al., 2022; Zhang J et al., 2023). In those studies,
drug related physicochemical parameters were searched online or
calculated. Various computational techniques have been established
for determining key parameters, including permeability (Paudel

et al., 2023). When employing quantitative techniques to develop
predictive models, the models could serve different purposes. For
example, quantitative structure—toxicity relationship (QSTR)
models were used for toxicity prediction based on chemical
structure (Rai et al., 2023), whereas PK models were used to
understand and predict the pharmacokinetic profile of drugs
in the body.

In the current study, the B2O simulator integrated the PDmodel,
PBPK and AI related algorithms into one platform. Machine
learning (ML) methods, as a subset of AI, are used to predict the
ADME and other physiochemical properties. As a specific type of
machine learning algorithm, Graph Neural Networks (GNNs) is

FIGURE 1
Workflow for predicting the PK and PD outcomes of a compound
using AI-PBPK platform.
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used in this study to analyse chemical structures and to perform
predication on structures’ PK parameters. Another algorithmic
approach used in the study was random forest model. The
platform employs the m5p random forest model, a decision tree-
based regression method, for modelling parameters like apparent
clearance (CLapp) (Alex A Freits and Ghafourian, 2015). Other
global features such as logP, were calculated using the
“CalcCripppenDescriptors” function in the RDKit
cheminformatics toolkit. PKa was calculated using the open-
source Dimorphit-DL (Ropp et al., 2019). The workflow for
predicting the PK and PD outcomes of a compound using the
AI-PBPK platform is shown in Figure 1. Examples such as
potassium-competitive acid blocker (P-CAB) drugs were used to
demonstrate the utility and benefits of this method in guiding early
discovery studies. The process involved using the molecular
structure and potency data of vonoprazan to calibrate its PK and
PD outcomes against observed results. Following this calibration,
the model underwent validation using revaprazan, another
compound in the P-CABs class. Subsequently, the PK and PD
outcomes for five different P-CABs were predicted and compared
to identify the most promising candidate.

The PD model was adapted from a mechanism-based model
developed by Kong et al., 2020 and Jia et al., 2021. It was indicated
that a significant proportion (52%) of drug failure in clinical trials
was due to poor efficacy from available data (Kiriiri et al., 2020). To
prevent subsequent setbacks, it is crucial to identify and validate the
target, confirming its significance in early discovery stage. “The
proportion of time with a gastric pH > 4 over a 24-h period” is the
endpoint in clinical studies of P-CAB drugs. P-CABs are designed to
inhibit gastric acid secretion. The gastric pH level is a direct measure
of acidity in the stomach. A pH greater than 4 indicates a reduction
in gastric acidity. This endpoint can be predicted using mechanism-
based pharmacokinetic (PK) and pharmacodynamic (PD) models.
For P-CABs, PKmodelling can predict the concentration of the drug
in the bloodstream. It is helpful to understand the drug’s availability
in the body, which is directly related to its efficacy. PD models are
used to predict how changes in drug concentration affect gastric acid
secretion and the gastric pH levels. The model considers the drug’s
mechanism of action, such as how the P-CAB drugs inhibit acid
secretion by blocking the H+/K + -ATPase (proton pump) in the
stomach lining, which directly affects gastric acidity, and
thus pH levels.

2 Methods

2.1 PBPK/PD modelling

The whole-body PBPK model, designed to predict plasma
concentration of vonoprazan and other P-CABs PK profiles at
different does, was based on two studies reported by (Thierry
Wendling et al., 2015a; Thierry Wendling et al., 2015b). The model
comprised 14 tissue compartments including lungs, hearts, brain,
muscle, adipose, skin, spleen, pancreas, liver, stomach, gut, bones,
kidneys and rest-of-body and 2 blood compartments (arterial and
mixed venous). Each tissue compartment is assumed well-stirred,
with the extent of distribution being characterised by the
equilibrium tissue: blood partition coefficient (Kp). The rate

equation for the tissue compartments can be expressed as follows
(Eq. 1):

dAT

dt
� QT

VVEN/ART
· AVEN/ART −

QT

VTKp
· AT (1)

Where AT is the drug amount (μg), VT is the volume (L) and QT is
the blood flow (L/h) for the different tissues, and AVEN/ART and VVEN/

ART are the amount (μg) and volume (L), respectively, of either mixed
venous blood or arterial blood for all other tissues. Drug elimination is
assumed to occur entirely in the liver compartment via oxidative
metabolism (Thierry Wendling et al., 2015a). The PBPK model was
integrated into the B2O platform. Subsequently, the PDmodel was also
integrated and described the correlation between the plasma
concentration of vonoprazan and the intra-gastric pH levels.

In the PD model, the antisecretory effects of the drug I, which also
represented the increase pH, was calculated using the formula (Eq. 2):

dl

dt
� k · Ce · Imax − I( ) − kd · I (2)

where dI/dt is the rate of change of the drug’s antisecretory,
which is also the rate of change of pH over time. Imax is the
maximum possible antisecretory effect (or maximum pH level)
the drug can achieve. K is the binding rate constant using the
ration of kd to ki. Ki is the inhibition index. Ce is the free drug
concentration in the stomach and kd is the irreversible inhibition
efficacy of H+/K+—ATPase. E/E0 in Graphic abstract equalls to
(1-I). Ce is calculated from the following formula (Eq. 3):

Ce � AGU · bpr
KPgut · kpscaler · VGU

· fub (3)

where AGU is the amount of drug in gut and Volume of gut. Kp is
the Tissue gut: plasma partition coefficient. Kp_scaler adjusted
all Kp values in equal proportions. Bpr is the blood to plasma ratio
and fub is unbound to plasma proteins in the bloodstream.

2.2 Graph neural networks

As a type of GNN model, The Message Passing Neural Network
(MPNN) model was used following the work developed by (Gilmer
et al., 2017; Jose Jimenez-Luna et al., 2021). The MPNN model
operates on undirected graphs composed of vertexes (v) and edges
(e) (Gilmer et al., 2017). It’s particularly useful for predicting
molecular properties. The next two steps provide a simplified
explanation of how the MPNN operates:

• Stage 1 Message Passing Phase: this phase runs for T time steps
and involves two function-message functions (Mt) and vertex
update functions (Ut). For each node in the graph, features from
its neighbour vertexes and edges (evw) are propagated into a
message vector. The hidden states (htv) at each node are updated
based on these messages. The equations are as follows (Eqs 4, 5):

mt+1
v � ∑

w∈N v( ) Mt htv , h
t
w , evw( ) (4)

ht+1v � Ut htv ,m
t+1
v( ) (5)

Here, w∈N(v) denotes the neighbour vertexes of each vertex v in
the graph.
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• Stage 2 Readout Phase: this phase computes a feature vector
for the whole graph using a readout function (R). The readout
function operates on the set of node states and must be
invariant to permutations of the node states. The equation
is as follows (Eq. 6):

ŷ � R htv v ∈ G|{ }( ) (6)

These functions (Mt, Ut, R) are learned differentiable functions
(Gilmer et al., 2017).

To train an MPNN model, one commonly employs a version of
stochastic gradient descent. During this process, the model is trained
to identify underlying structural traits of molecules and to predict
molecular characteristics by minimizing the difference between its
predictions and the actual values. This study highlights the
application of MPNN models in clarifying the relationship
between molecular structures and their properties, with a
reference to the studies conducted by Jose Jimenez-Luna et al.,
2021. In this example, all molecular structures were converted into
graph representations using the Python DGL package. Additionally,
2D features produced by RDkit were integrated, similar approach
was also used in random forest model. Parameters such as plasma
protein binding rate (ppbr, data size: 4637, best fold R2 = 0.551),
blood to plasma ratio (bpr, data size: 461; best fold R2 = 0.107),
Volume of distribution (Vss, data size: 1305, best fold R

2 = 0.413) and
Caco-2 Permeability (Papp, data size: 525, best fold R2 = 0.412) were
predicted. Permeability in Caco-2 cells was used to calculate Fa, the
fraction absorbed. The model of the best fold was chosen for the AI-
PBPK model.

2.3 Random forest (tree model) models

The m5p random forest model consists of an ensemble of m5p
trees, which are decision trees that use linear regression functions at
the leaf nodes instead of constant values. The m5p random forest
model works by randomly selecting a subset of features and a subset
of instances for each tree, and then building the tree using the m5p
algorithm. The m5p algorithm splits the instances based on the
feature that minimizes the variance of the linear regression functions
at the child nodes. The final prediction of the m5p random forest
model is obtained averaging the predictions of all the trees in the
ensemble. More details of how the algorithm trains a model and
performs prediction were addressed in Freitas’s original work (Alex
A Freits and Ghafourian, 2015). After design and coding, data was
trained for Clapp model. The Clapp dataset was split into 10 folds,
each were successively deemed as validation set in each turn and the

rest 9 folds were deemed as a training set. The mean absolute error
(MAE) was chosen as the indicator to show the performance of the
model trained by the training set of each turn. The smallest MAE of
all turns described how well the model fits the training data and
predicts external data and helped to choose the best Clapp model to
be added to the AI-PBPK model. Parameters such as apparent
clearance CLapp (data size: 98, best fold R2 = 0.388, internal R2 =
0.7996) was predicted using this model.

2.4 Data source of machine learning

Five ADME parameters were modelled by machine learning. They
are the fraction of the drug that is unbound to plasma proteins in the
bloodstream (fup; fup = 1-ppbr), steady state volume of distribution
vss_perKg, apparent clearance Clapp (Clapp = vss*0.693/half-life),
gastrointestinal absorption constant (gi_ka; gi_ka = 2*Papp/radius of
small intestine) and blood to plasma ratio (bpr). The radius of small
intestine is 1.25 cm according to its 2.5 cm diameter (Herbert and
Helander, 2014). The data for the first 4 parameters were collected from
the Therapeutics Data Commons (TDC) database. Its Python package
named “PYTDC” was installed, and the correspondent datasets were
used in this package:

Additionally, the bpr data were from the Mamada’s work
(Hideaki Mamada et al., 2021). All 5 datasets were composed of
2 vectors with same lengths. One of them was their molecular
structure displayed in SMAILES codes, and the other was the
correspondent ADME parameter values for each molecule.

2.5 Design of simulation studies

When the PBPK/PD model was established, and the needed
parameters were collected or generated by machine learning models,
the PK and gastric pH profiles were simulated for each drug for a
48—hour duration after 20 mg single oral dose.

2.6 Case study: potassium-competitive acid
blocker drugs to reduce the production of
stomach acid

As one of the most well-known examples of P-CAB drugs,
vonoprazan has gained global recognition to treat conditions related
to stomach acid, such as gastroesophageal reflux disease (GERD) and
peptic ulcers. Its primary target is the H+/K+ ATPase enzyme. Known as

Datasets ADME parameters Short names

TDC.PPBR_AZ Plasma protein binding ratio Ppbr

TDC.VDss_Lombardo Steady state volume of distribution Vss

TDC.Half_Life_Obach Half life

TDC.Caco2_Wang Caco2 permeability Papp

Mamada’s work (Hideaki Mamada et al., 2021) Blood to plasma ratio Bpr
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the proton pump, the enzyme is located in the stomach lining.
Vonoprazan inhibits the proton pump by binding competitively to
the potassium-binding site on the pump, thus inhibiting the exchange of
hydrogen ions for potassium ions. This inhibition reduces the amount
of gastric acid produced and secreted into the stomach, which can help
to alleviate symptoms associated with acid-related disorders. In clinical
trials, the proportion of time with a gastric pH > 4 over a 24-h period is
often used as a primary or secondary endpoint. Because the optimal PK
required for a drug candidate to elicit efficacy is highly dependent on the
targeted pharmacology (Chen EP and Michalski, 2021), PK and PD
results were both analysed in the platform to avoid misguiding of
compound screening and design. The study also included five other
compounds which also has H+/K+ ATPase as the target.

In this study, the PK performance of vonoprazan was firstly
predicted and calibrated with observations. After verification with
revaprazan, the PK performance of the other five P-CAB
compounds was simulated. Following that, their PD outcomes
were also simulated using the AI-PBPK platform. Finally, the PK
and PD results of different doses of compounds were analysed and
compared, and the optimal combination of PK, PD and dose of
candidate compounds was determined.

2.7 Literature search

Observed data were collected from literature search. Since
vonoprazan was firstly approved in Japan in 2014, a PubMed
search was conducted using “vonoprazan” AND “clinical trial” as
keywords, beginning from the year 2014. Only those publications
that contain comprehensive PK data from a 20 mg monotherapy of
vonoprazan in healthy subjects for the first 2 days were included.
Observed PD data were collected from literature search as well, with
the same keywords. We only included studies that provided results
on gastric pH versus time over a 24-h period from a 20 mg
monotherapy of vonoprazan in healthy subjects (fasting condition).

2.8 Software

The PBPK model was implemented using the software B2O
simulator, a web-based platform, to predict drug exposures. With
lower and upper CI% (Confidence Interval) limits 2.5%–97.5%, the
geometric mean of the maximum serum concentration that a drug
achieves in the body (Cmax) and the area under the curve (AUC) were
calculated, and ratios between geometric means were calculated and
compared with the observations from clinical studies. Changes bigger
than or equal to 2-fold were considered significant.

2.9 Statistical analyses

Pearson’s correlation coefficient (r) is a statistical measure that
express the extent of the correlation between two variables. The
correlation coefficient was calculated using R version 4.3.0.

Local sensitivities of the following 17 parameters predicted by the
machine learning models were analysed. They were fup, bpr, gi_ka,
clapp, vss_perKg, kp_bone, kp_brain, kp_adipose, kp_heart, kp_
kidney, kp_gut, kp_liver, kp_lung, kp_muscle, kp_skin, kp_spleen,

kp_scaler. Kp represents the tissue: plasma partition coefficient. Each
of them was tuned ±1% from their predicted value, and the percent
change of AUC and Cmax values of revaprazan in response to an
average 1% change in each parameter were studied and compared.

3 Results

3.1 Simulation, calibration and verification of
PK behaviour

3.1.1 Simulation of vonoprazan PK performance
The SMILES code for vonoprazan is CNCC1 = CN(C (=C1)

C2 = CC = CC = C2F)S (=O)(=O)C3 = CN = CC = C3. When the
SMILES code was entered into the AI-PBPK platform, the plasma
concentration of vonoprazan was simulated and the result is
shown in Figure 2A (solid black line). The predicted parameters
including ADME and physicochemical properties, are listed in
Table 1. The Kp scaler adjusted all Kp values in equal
proportions. Its size varied based on the predicted vss_per Kg.
The outcomes from the simulation were compared with the
observed results. After literature search, PK data observed
from five clinical studies were chosen, and their values were
used for comparison with the simulation outcomes, as described
in Figure 2A. From the figure we can see that the simulated drug
exposure, which is represented by the area under the curve in the
plasma concentration versus time plot, was greater than the
values corresponding to the average observed exposure.

3.1.2 Calibration with vonoprazan PK performance
In this case, the terminal half-life, which represents the

elimination of drug, should be adjusted. In order to
determine the extent of reduction needed, the log of plasma
concentration versus time for both simulated and observed
results are plotted in Figure 2B. Since the slope of the
logarithmic curve represents the terminal half-life and the
slope of the predicted log curve was about 3.08 times that of
the observed curve, the initial simulation leads to a much quicker
absorption. In this case, the drug absorption fraction Fa, was
adjusted to be half of its original predicted value.
Simultaneously, the elimination CLapp was adjusted 3.08 times
bigger and the absorption rate (gi_ka) was adjusted 3.5 times
smaller. The PK outcomes before and after adjustment are listed
in Table 2, and the predicted results following parameter
adjustment are also shown in Figure 2A.

3.1.3 Mode verification with revaprazan
After calibration, the predictive capacity of the platform was

further validated by inputting the chemical structure of
revaprazan, which also has P-CAB target. The predicted PK
outcomes were compared with observed results (Kim et al.,
2010), as described in Figure 3. Three different doses (100 mg,
150 mg, and 200 mg) were used and the results on days 1 and
7 were compared. The predicted and observed data of revaprazan
after orally taken 200 mg on days 1 and 7 are listed in Table 3. All
the outcomes were simulated based on one virtual healthy
subject. From the table we can see that the predicted PK
results are within two times of the observed results. The
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Pearson’s correlation coefficient (r) was calculated for all time
points of the predicted and observed PK data of revaprazan at
doses of 100 mg, 150 mg and 200 mg. As a result, the correlation
coefficient was 0.8404, 0.8862, and 0.8754 respectively. The
analysis results indicated that the model reasonably predicted
drug exposure. In the early stages of drug discovery, using a
model based on one single virtual healthy subject can provide a

baseline understanding of how a typical healthy body might
respond to the drug, which is useful for initial screening.
Moreover, at this early stage, accurately defining the disease
population remains challenging. The presence of disease could
introduce considerable inter-variability of patients into the PBPK
models, making it difficult to model multiple subjects in the early
stage of drug discovery.

FIGURE 2
Simulation results of vonoprazan: (A) Plasma concentration versus time and comparisons with observations from studies A (Kentaro, 2018), B (Tack
et al., 2023), C (Jenkins et al., 2015), D (Mulford DJ et al., 2022) and E (Jenkins and Patat, 2017), before and after calibration (adjustment); (B) Logarithm of
simulated vonoprazan plasma concentration versus time before and after calibration (adjustment); (C) Concentration in the stomach after calibration.
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Because it is believed that the concentration of vonoprazan in
the stomach is different from the plasma concentration and
could be 1000 times higher than the concentration in plasma

24 h after administration to humans (Kong et al., 2020), we
simultaneously predicted the concentration of vonoprazan in the
stomach, as shown in Figure 2C. Comparing to the plasma

TABLE 1 Predicted parameters for vonoprazan.

Fraction unbound in plasma, fup 0.13418 Apparent elimination rate, Clapp 11.58736

Blood-to-plasma ratio, bpr 0.80581 Volume of distribution, vss_per Kg (L/kg) 3.497

Absorption rate, gi_ka 1.51647

Tissue: plasma partition coefficient Kp_

Bone 3.28785 Liver 13.84071

Brain 90.15343 Lung 6.48797

Adipose 29.91066 Muscle 7.44037

Heart 13.85107 Skin 56.12225

Kidney 20.40353 Spleen 7.81823

Gut 14.27052 Kp Scaler 0.3012

TABLE 2 Comparison of simulated PK results before and after adjustment.

PK Parameters Simulated results before
adjustment

Observation Kentaro,
(2018)

Simulated results after
adjustment

AUC0-t (ng*hr/mL) 1138.4 223.9 241.14

AUC0-∞ (ng*hr/mL) 1435.2 227.1 248.14

Cmax (ng/mL) 99.7 22.5 22.01

Tmax (hr) 0.6 2 1.8

Terminal T1/2 (hr) 23.48 7.62 10.68

AUC: the area under the curve.

Cmax: the maximum serum concentration that a drug achieves in the body.

Tmax: time to peak drug concentration.

T1/2: the time required for half the dose of drug administered to be removed from the body.

FIGURE 3
Simulated (solid lines with colours) and observed plasma concentration (dashed lines with colures) of revaprazan after calibration.
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concentration, the peak concentration in the stomach was
around 524 ng/mL, which was 23.8 times higher than plasma
concentration in Figure 2A.

3.1.4 Sensitivity analysis
The results of sensitivity analysis demonstrated that the most

sensitive parameter that influenced the AUC and Cmax of PK
prediction was bpr, which caused almost 1.5% change in Cmax
and 1% change in AUC when it was changed by 1%. Moreover,
CLapp caused approximately 1% opposite change in AUC when it
was changed by 1%. The remaining parameters showed minimal
sensitivity to PK predictions, as a local 1% alteration in their values
results in less than 0.5% change, indicating they did not significantly
influence the prediction.

3.2 Simulation, calibration and verification of
PD outcomes

3.2.1 Simulation and calibration of vonoprazan
PD outcomes

When assessing acid-suppressing drug like P-CABs,
maintaining a gastric pH greater than 4 for as much of a 24-h

period as possible is often a critical PD endpoint. This is because a
gastric pH above 4 is generally considered as the necessary
threshold to prevent symptoms associated with acid-related
disorders. To assess the PD results of vonoprazan, potency
related parameters like IC50 (half maximal inhibitory
concentration), Ki (the inhibition constant), and other
pharmacological parameters such as Dissociation half-life
(residence time), Kd (dissociation constant) and K (binding
rate constant for the reaction between the drug and its target,
Kd/Ki) were searched and calculated from literatures and the
values are listed in Table 4. Vonoprazan and KFP_H008 showed
relatively low IC50 values as 0.019 and 0.029 μM respectively,
indicating higher potency of the compounds to inhibit gastric
acid secretion. Revaprazan had the highest IC50 value as 1 μM.
The time required for half the dose of drug administered to be
removed from the body (t1/2) of dissociation of TAK-438 binding
was 4.7 h. This value was employed for other P-CAB compounds
because there was no available data from literature search. Kd was
calculated from (ln (2)/dissociation half-life) and K was the
binding rate constant using the ration of Kd to Ki

Using parameters sourced from literatures, the gastric pH of
subjects after oral administration of vonoprazan was simulated.
The outcomes from the simulation were compared with the

TABLE 3 Predicted and observed data of revaprazan after oral administration 200 mg.

Days Predictions Observations

AUC0-t (ng*hr/mL) Cmax (ng/mL) Tmax (hr) AUC0-t (ng*hr/mL) Cmax (ng/mL) Tmax (hr)

1 Geometric mean 2091.2 221.2 2.5 1452.3 402.2 1.7

7 Geometric mean 2700.5 250.8 2.5 1916.1 453.6 1.7

AUC: the area under the curve.

Cmax: the maximum serum concentration that a drug achieves in the body.

Tmax: time to peak drug concentration.

TABLE 4 Input parameters for the prediction of PD outcomes.

Name SMILES code IC50 (μM, pH = 6.5) Ki

(μM)
Dissociation half-
life (hr)

Kd

(hr-1)
K (μM-

1*hr-1)

Vonoprazan CNCc1cc (-c2ccccc2F)n (S (=O)(=O)
c2cccnc2)c1

0.019 Yasunobu Hori et al.
(2010)

0.0095 4.7 Jai Moo Shin et al. (2011) 0.147 15.524

Revaprazan CC1C2 = CC = CC = C2CCN1C3 =
NC(=NC(=C3C)C)NC4 = CC =
C(C=C4)F

1 Jai Moo Shin et al. (2011) 0.5 4.7 0.147 0.294

Compound −1 CCNCc1cc (-c2cccs2)n (S (=O)(=O)
c2ccc(C)cc2)c1

0.31 Mitsuyo Kondo et al.
(2012)

0.155 4.7 0.147 0.951

Compound −2 CCNCc1cc (-c2ccc3c (c2)OCO3)n (S
(=O)(=O)c2ccc(C)cc2)c1

0.54 Mitsuyo Kondo et al.
(2012)

0.27 4.7 0.147 0.546

KFP_H008 CNCc1cc (-c2ccc3 [nH]ccc3c2)n (S
(=O)(=O)c2cccnc2)c1

0.029 Li et al. (2017) 0.0145 4.7 0.147 10.171

AZD0865/
Linaprazan

Cc1cccc(C)c1CNc1cc (C(O) = NCCO)
cn2c(C)c(C)nc12

*0.13 (Luo and Zou. (2014) 0.065 4.7 0.147 2.269

SCH28080 Cc1nc2c (OCc3ccccc3)cccn2c1CC#N 0.17 Mitsuyo Kondo et al.
(2012)

0.085 4.7 0.147 1.735

*IC50 was measured under pH = 6.4.
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observed results. Gastric pH is affected by the local concentration
of proton pumps. Proton pumps, which is also known as H+/K+

ATPase enzymes, are present in the parietal cells of the stomach
lining. Since proton pumps are responsible for the production of
stomach acid, drugs like P-CABs are taken orally to inhibit these
pumps, thereby reducing the secretion of stomach acid. The
gastrointestinal concentration of drug doesn’t equal to the
local concentration of the proton pump. As such, an
enrichment coefficient for the drug, with a value of intersys =
1 × 103, was introduced to the free vonoprazan concentration Ce

in the stomach. After calibration, the predicted outcomes,
together with observed results are shown in Figure 4. The
predicted time percentage with a pH > 4 for vonoprazan was
88.88%. This was within a 1.5-fold variance compared to the
mean of the clinical observations A-C (Sakurai Y et al., 2015;
Suzuki et al., 2018; Laine et al., 2022), which averaged at 76.4%.

3.2.2 Model verification with revaprazan
The ability of the platform to predict PD results was further

verified by revaprazan with potency and relevant parameters. The
predicted gastric pHs were compared with observed results. When
revaprazan was administered orally at a dose of 200 mg, the
predicted duration with a pH > 4 was 57.1%. This was within a
1.5-fold variance from the study observation, which recorded a value
of 42.2% (Kim et al., 2010). The predicted onset time to reach
pH 4.5 was 4 h. The observed time for intragastric pH to reach
4.5 was withing 2 h (Kim et al., 2010). All the predicted results
indicate a reliable predictive capacity of the platform for revaprazan.

3.3 Prediction of PK and PD outcomes of
other P-CAB compounds under the
same dose

The PK and PD outcomes of the other five compounds were
simulated under the same dose of 20 mg, which is the same to

vonoprazan. Having P-CAB as the target, all the chemical structures
were searched from literatures. Their names and SMILES codes are
listed in Table 4.

The comparison of predicted plasma concentration is shown in
Figure 5A. From the results we can see that the five compounds
showed similar plasma profiles with compound-2 having the highest
concentration in around 2 hours, followed by compound-1. The
simulated gastric pH versus time was compared and showed in
Figure 5B. As mentioned above, pH > 4 holding time percentage is
an important clinical indicator of P-CAB drug in the clinical
development of Gastroesophageal Reflux Disease (GERD) and
peptic ulcer and pH > 4 helps avoid irritation of the esophagus
or ulcer by stomach acid. The shorter the onset of action, the faster
the effect of the drug in relieving symptoms. From the figure we can
see that within 24 h, all compounds showed fluctuating gastric
pH around pH 4. A similar pH fluctuation was observed
following the oral administration of vonoprazan, although
vonoprazan exhibited a higher gastric pH value. The results of
the 24-h time percentage and onset time for pH > 4 are
summarized in Table 5. Combining the two major indicators, the
simulation found that among the five compounds, KFP_H008 had
the best percentage pH > 4 holding time with relatively short onset
time, which were 81.17% and 0.99 h respectively.When compared to
vonoprazan, KFP_H008 demonstrated close PD outcomes in terms
of pH > 4 hold time and time of onset and showed promise for
further development.

3.4 Prediction of PK and PD outcomes of
other P-CAB compounds at different doses

The PD efficacy of different compounds at different doses were
simulated to compare the development potential of the compounds.
We compared gastric pH changes for different compounds at 10 mg,
20 mg, 40 mg, 80 mg, 160 mg, and 400 mg. With an increase in the
dose from 10 to 400 mg, the pH > 4 holding time of most

FIGURE 4
Simulated gastric pH over 24 h, comparing to observations from Studies A (Sakurai Y et al., 2015), B (Laine et al., 2022) and C (Suzuki et al., 2018), after
calibration.
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FIGURE 5
Simulation of five P-CAB compounds of (A) Plasma concentration versus time; (B) Gastric pH over 24 h after orally administration.

TABLE 5 Simulated pH > 4 holding time percentage and time of onset of P-CAB compounds under dose of 20 mg.

Drugs pH > 4 Holding Time Percentage % Time of Onset (h)

Vonoprazan 88.88 1.028

Compound-1 47.79 1.144

Compound-2 21.88 1.272

KFP_H008 81.17 0.99

Linaprazan 56.79 1.078

SCH28080 47.87 1.05
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compounds increased. Starting with a dose of 20 mg, the percentage
holding time of the KFP_H008 fluctuated from 80% to 90%. The
results of pH > 4 holding time and the time of onset are summarised
in Tables 6 and 7. Comparing to other compounds, KFP_
H008 maintained the pH > 4 for the longest duration and had a
comparatively faster onset time among all the doses, starting
from 10 mg.

4 Discussion

It is believed that predicting PD, such as pH over time, using the AI-
PBPK/PD model is more effective than predicting PK to accelerate the
screening of compounds in the drug development stage. Since the
primary interest in drug development is the therapeutic effect of drug,
predicting the PD allows for a direct understanding of whether a
compound is likely to have the desired therapeutic effect or not, and
can streamline the compound screening process.

In the current study, ML algorithms are used to estimate model
parameter. RDKit package in Pthyon is a cheminformatics library and it
is specially designed for the analysis of chemical data. It can read various
chemical file formats and represent molecular structures
programmatically. And the RDKit compute a wide range of
molecular descriptors and features such as molecular weight, log P,
and hydrogen bond donors/acceptors. In DGL package, molecules can
be represented as graphs, where atoms are nodes, and bonds are edges.
It is powerful in learning the patterns and relationships in graph data.

Coded and defined by DGL, GNNs can learn complex relationships
between atom in molecule, which can be crucial for understanding tis
properties and behaviour. Using DGL, the features extracted by RDKit
can be integrated into the graph model. This allows the GNN to
consider detailed chemical information while making predictions. This
combination allows for amore holistic analysis of chemical compounds,
considering both of their structural features and the complex
interatomic relationships. High-quality, accurate, and well-annotated
data is essential for training reliable predictive models.

UsingMLorAI in drug development process is an important part of
pharmaceutical companies’ strategies. Comparing to totally new drug
development, “fast follow” study is based on a substantial data available
from the pioneering drug, including its structure, model of action,
therapeutic target, and clinical trial results. These data can provide a
solid foundation for training machine learning models, potentially
leading to more accurate predictions for new compounds. However,
integrating AI with PBPK models presents numerous challenges and
comes with its own set of limitations. Firstly, ML or AI models often
require large datasets to be effective. In the current study, the majority of
the parameters were predicted using data size exceeding 461, with
exception of the apparent elimination rate CLapp, which was
estimated using a data size of 98. Increasing the data input is
necessary to enhance the accuracy of the model’s predictions of
parameters. Also, the training database has not included first-in-class
structures. A first-in-class medication is a pharmaceutical that uses
a “new and unique mechanism of action” to treat a particular
medical condition. Secondly, any improvements to the PBPK
model’s predictive accuracy brought about by AI need to be
rigorously validated using experimental data. Thirdly, a single
virtual subject cannot represent the variability and diversity
found in a real population. Upon comparing with the
observed data, both the PK and PD of the model
demonstrated a close match. This similarity was further
evidenced by a relatively strong correlation with the observed
data, as demonstrated by Pearson correlation coefficients (r
values) around 0.8. This indicates that the model performed
well. In the present research, the model was calibrated by
using the observed data from vonoprazan. After the
calibration, another external validation was used to further
validate the model by testing it against data sets that were not
used in the calibration. This process ensures that the model is
accurate and reliable in predicting real-world outcomes.

Sharing with similar core structures, P-CABs reduce stomach acid
production within a few hours of intake, and often has a long duration
of action. One well-known P-CABs is vonoprazan. It has been studied
and used in various countries, offering an alternative to Proton pump
inhibition (PPIs), especially in cases where PPIs are not effective or
suitable. While like all medications, vonoprazan can have side effects.
Common side effects include diarrhoea, constipation, abdominal pain
and nausea. Also, drug interactions with other medications also need to
be considered carefully. Revaprazan didn’t demonstrate sufficient
efficacy and failed to go onto market. In pharmaceutical industry,
the drugs that are chemically similar to already existing drugs are called
“me too” drugs. The strategy of developing “me too” drugs is adopted by
companies aiming to enter a profitable market by creating a product
that is similar to a top-selling drug. In this case study, the AI-PBPK
platform becomes an effective and efficient way to find out the
alternative “me too” drugs to vonoprazan. The possible PD

TABLE 6 PH > 4 holding time percentage % of different compounds under
different doses.

pH > 4 Holding Time Percentage %

Doses (mg)

Drugs
10 20 40 80 160 400

Compound-1 36.68 47.79 95.51 70.60 79.71 88.53

Compound-2 15.77 21.88 28.07 35.05 41.95 49.25

KFP_H008 71.96 81.17 88.21 92.31 94.60 95.50

Linaprazan 43.54 56.79 69.23 79.63 87.60 93.15

SCH28080 37.24 47.87 57.82 67.42 76.48 86.69

TABLE 7 The onset time of different compounds under different doses.

Time of Onset (h)

Doses (mg)

Drugs
10 20 40 80 160 400

Compound-1 0.99 1.144 1.062 1.038 1.006 1.012

Compound-2 0.974 1.272 1.094 1.03 1.012 1.016

KFP_H008 1.024 0.99 1.036 1.002 0.996 0.994

Linaprazan 0.994 1.078 1.024 1.016 1.038 0.974

SCH28080 0.998 1.05 1.018 1.026 0.988 1.01
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outcomes of five P-CAB compounds were simulated using the sameAI-
PBPK platform after verification. KFP_H008 showed a comparatively
longer duration with a pH > 4 compared to the other compounds, with
a percentage exceeding 80% when the dose was more than 20 mg.

IC50 and Ki are both crucial parameter in biochemistry and
pharmacology, and they help in understanding the type and strength
of the inhibition. For IC50, a lower value indicates higher potency,
meaning less substance is needed to achieve a 50% inhibition. In Table 4
with parameter values, vonoprazan showed the lowest IC50 andKi values,
followed by KFP_H008. Comparing to the other four compounds, the
lowest IC50 and Ki values of KFP_H008 consistent with the prediction
results that KFP_H008 presented the longest pH > 4 holding time and a
relatively short onset time at various doses. It is also worth noting that,
KFP_H008 didn’t exhibit the most favourable PK properties in the
simulations. In Figure 5A, compound-2 demonstrated a rapid
attainment of peak plasma concentration following oral
administration. Leveraging the AI-PBPK platform can aid in the
identification of the optimal combination of PK, PD and doses of the
high-quality drug candidates throughout the compound screening
process. Among the five compounds, KFP_H008 presented the best
therapeutic effects.

In summary, the platform can leverage a combination of machine
learning and PBPKmodel to predict drug efficacy during the discovery
stage. It establishes a direct link between clinical endpoints and
structures that influence PK and/or PD outcomes. One of the
benefits of employing AI in predicting drug parameters for PBPK
models is the capability to analysemultiple drug classes, not just a single
category. Currently the training database in the B2O platform included
thousands of training data which covered most of the main chemical
structures in drugs. Provided that appropriate calibration and validation
steps are performed prior to prediction, the platform should be capable
of reliable predicting PK and PD outcomes within the same category to
find out the best ‘me too’ drugs. In the future, when the first-in-class
drug database is created, virtual drug screening will be available to
predict PK and/or PD outcomes for first-in-class drugs.

5 Conclusion

As a simulation tool, theAI-PBPK/PDplatform showed the potential
to predict the desired therapeutic effects of drug candidates at the early
drug discovery stage. Among the five compounds, KFP_H008 presented
the best therapeutic effects, with the longest pH > 4 holding time and a
relatively short onset time when administered at doses exceeding 10mg.
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