30 research outputs found

    Effect of Physical Exercise on College Students’ Life Satisfaction: Mediating Role of Competence and Relatedness Needs

    Get PDF
    This study examined the effect of physical exercise on the life satisfaction among college students. On the basis of the Basic Psychological Need Theory, the mediating roles of competence and relatedness needs satisfaction and their differences among college students in physical education (PE) majors and non-PE majors were explored. The sample included 1,012 college students who were selected to participate in an online survey. Major findings were as follows: (1) The total effect of physical exercise commitment on college students’ life satisfaction was marginally significant while that of physical exercise adherence was not significant; (2) The effect of physical exercise commitment was observed exclusively through the mediating role of relatedness need satisfaction, while that of physical exercise adherence was through both competence and relatedness needs satisfaction; (3) In terms of differences caused by major, only one mediation path, that was, physical exercise → competence need satisfaction → college students’s life satisfaction was significant among PE majors. This study thus enriched the empirical research on the benefits of physical exercise to individual mental health, highlighted the particularity of college students majoring in PE, and provided targeted and sensible suggestions for the design of physical exercise intervention programs

    A high-fat diet catalyzes progression to hyperglycemia in mice with selective impairment of insulin action in Glut4-expressing tissues

    Get PDF
    Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies

    Catalytic Hydrogenation of CO2 to Methanol: A Review

    No full text
    High-efficiency utilization of CO2 facilitates the reduction of CO2 concentration in the global atmosphere and hence the alleviation of the greenhouse effect. The catalytic hydrogenation of CO2 to produce value-added chemicals exhibits attractive prospects by potentially building energy recycling loops. Particularly, methanol is one of the practically important objective products, and the catalytic hydrogenation of CO2 to synthesize methanol has been extensively studied. In this review, we focus on some basic concepts on CO2 activation, the recent research advances in the catalytic hydrogenation of CO2 to methanol, the development of high-performance catalysts, and microscopic insight into the reaction mechanisms. Finally, some thinking on the present research and possible future trend is presented

    Catalytic Hydrogenation of CO<sub>2</sub> to Methanol: A Review

    No full text
    High-efficiency utilization of CO2 facilitates the reduction of CO2 concentration in the global atmosphere and hence the alleviation of the greenhouse effect. The catalytic hydrogenation of CO2 to produce value-added chemicals exhibits attractive prospects by potentially building energy recycling loops. Particularly, methanol is one of the practically important objective products, and the catalytic hydrogenation of CO2 to synthesize methanol has been extensively studied. In this review, we focus on some basic concepts on CO2 activation, the recent research advances in the catalytic hydrogenation of CO2 to methanol, the development of high-performance catalysts, and microscopic insight into the reaction mechanisms. Finally, some thinking on the present research and possible future trend is presented

    Unconventional Ferroelectricity with Quantized Polarizations in Ionic Conductors: High-Throughput Screening

    No full text
    Ferroelectricity is generally a displacive phenomenon within a unit cell in which ions are placed asymmetrically. In ionic conductors, ions can also be electrically displaced but by much longer distances. They are mostly nonpolar with symmetrical lattices due to the nondirectional character of ionic bondings. Here we propose that the combination of two such displacive modes may give rise to unconventional ferroelectricity with quantized polarizations, where even one local vacancy may induce giant polarization in ubiquitous ionic conductors. Such systems should be insulating with ion vacancies inclined to aggregate at one side. Our high-throughput screening combined with ab initio calculations provided 35 candidates, from which we select KSnS4 and Na4SnS4 to show the existence of such long ion displacement ferroelectricity with a change in integer quantum number in polarizations during switching. The polarizations can be unprecedentedly large with a moderate density of ion vacancies that can be experimentally achieved via ion deintercalation

    A new non-stationary standardised streamflow index using the climate indices and the optimal anthropogenic indices as covariates in the Wei River Basin, China

    No full text
    Study region: Catchment area above the Huaxian station along the Wei River Basin, China. Study focus: This study attempts to construct a new Non-stationary Standardized Streamflow Index (NSSI) applicable to the variable streamflow sequence of the Wei River Basin based on the climate index and the optimal anthropogenic index, and analyse the drought characteristics of the basin. The climate index is used to quantify climate change factors and three anthropogenic indices are used to quantify the factor of human activities, including the reservoir index, the human-induced index calculated based on the Variable Infiltration Capacity (VIC) hydrological model and the Long Short-Term Memory (LSTM) model machine learning approach, respectively. New hydrological insights for the region: The human-induced index based on the LSTM model is more suitable for quantifying anthropogenic factors in the Wei River Basin. The NSSI performs better than the SSI in drought identification. The NSSI based on the LSTM model can capture more frequent severe drought and extreme drought events. The frequency of severe drought and extreme drought is higher in summer and autumn than in the others. The NSSI can better characterize the hydrological drought processes under a non-stationary condition, thus it can provide a more effective reference for regional drought assessment and related policy-making from the perspective of a changing environment

    Preliminary utility of the retrospective IMERG precipitation product for large-scale drought monitoring over Mainland China

    No full text
    This study evaluated the suitability of the latest retrospective Integrated Multi-satellitE Retrievals for Global Precipitation Measurement V06 (IMERG) Final Run product with a relatively long period (beginning from June 2000) for drought monitoring over mainland China. First, the accuracy of IMERG was evaluated by using observed precipitation data from 807 meteorological stations at multiple temporal (daily, monthly, and yearly) and spatial (pointed and regional) scales. Second, the IMERG-based standardized precipitation index (SPI) was validated and analyzed through statistical indicators. Third, a light-extreme-light drought-event process was adopted as the case study to dissect the latent performance of IMERG-based SPI in capturing the spatiotemporal variation of drought events. Our results demonstrated a sufficient consistency and small error of the IMERG precipitation data against the gauge observations with the regional mean correlation coefficient (CC) at the daily (0.7), monthly (0.93), and annual (0.86) scales for mainland China. The IMERG possessed a strong capacity for estimating intra-annual precipitation changes; especially, it performed well at the monthly scale. There was a strong agreement between the IMERG-based SPI values and gauge-based SPI values for drought monitoring in most regions in China (with CCs above 0.8). In contrast, there was a comparatively poorer capability and notably higher heterogeneity in the Xinjiang and Qinghai-Tibet Plateau regions with more widely varying statistical metrics. The IMERG featured the advantage of satisfactory spatiotemporal accuracy in terms of depicting the onset and extinction of representative drought disasters for specific consecutive months. Furthermore, the IMERG has obvious drought monitoring abilities, which was also complemented when compared with the Precipitation Estimation from the Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) 3B42V7. The outcomes of this study demonstrate that the retrospective IMERG can provide a more competent data source and potential opportunity for better drought monitoring utility across mainland China, particularly for eastern China

    Spatial and Temporal Variability in Precipitation Concentration over Mainland China, 1961–2017

    No full text
    Understanding the patterns and mechanisms of precipitation variations is important for assessing flood and drought risks and for ensuring sustainable water use. Here, we analyzed the characteristics of annual precipitation changes in eight subregions of China using the Mann&#8722;Kendall test based on daily precipitation data from 774 rain gauge stations during 1961&#8722;2017. Then, we used the monthly precipitation concentration index (PCI) and daily concentration index (CI) to analyze precipitation concentrations. The results are as follows: (1) PCI and CI in northern China generally decreased with time, indicating a uniform precipitation distribution. Notably, the annual precipitation increased significantly in Xinjiang and the Qinghai-Tibet Plateau, which could alleviate future drought. (2) PCI increased and CI decreased in the plain regions of the Yangtze River and Southeast China, exhibiting high CI values with marked increases of annual precipitation. Such heavy rainfall events combined with high rainfall concentrations could increase the flood risk. (3) A significant PCI increase and CI decrease occurred in Southwest China, where annual precipitation decreased significantly. Regular rainfall decreased notably, which could increase the likelihood of drought hazards. (4) Overall, both indices showed negative trends at most stations; precipitation distribution was generally more uniform over China. These findings improve our understanding of extreme rainfall evolution and water resource distribution over China. Furthermore, PCI and CI can serve as warning tools for disaster control and water resource management
    corecore