115 research outputs found

    ABAC Requirements Engineering for Database Applications

    Get PDF

    RetouchUAA: Unconstrained Adversarial Attack via Image Retouching

    Full text link
    Deep Neural Networks (DNNs) are susceptible to adversarial examples. Conventional attacks generate controlled noise-like perturbations that fail to reflect real-world scenarios and hard to interpretable. In contrast, recent unconstrained attacks mimic natural image transformations occurring in the real world for perceptible but inconspicuous attacks, yet compromise realism due to neglect of image post-processing and uncontrolled attack direction. In this paper, we propose RetouchUAA, an unconstrained attack that exploits a real-life perturbation: image retouching styles, highlighting its potential threat to DNNs. Compared to existing attacks, RetouchUAA offers several notable advantages. Firstly, RetouchUAA excels in generating interpretable and realistic perturbations through two key designs: the image retouching attack framework and the retouching style guidance module. The former custom-designed human-interpretability retouching framework for adversarial attack by linearizing images while modelling the local processing and retouching decision-making in human retouching behaviour, provides an explicit and reasonable pipeline for understanding the robustness of DNNs against retouching. The latter guides the adversarial image towards standard retouching styles, thereby ensuring its realism. Secondly, attributed to the design of the retouching decision regularization and the persistent attack strategy, RetouchUAA also exhibits outstanding attack capability and defense robustness, posing a heavy threat to DNNs. Experiments on ImageNet and Place365 reveal that RetouchUAA achieves nearly 100\% white-box attack success against three DNNs, while achieving a better trade-off between image naturalness, transferability and defense robustness than baseline attacks

    A Program Logic for Reasoning About C11 Programs With Release-Sequences

    Get PDF

    Attention-based Dynamic Graph Convolutional Recurrent Neural Network for Traffic Flow Prediction in Highway Transportation

    Full text link
    As one of the important tools for spatial feature extraction, graph convolution has been applied in a wide range of fields such as traffic flow prediction. However, current popular works of graph convolution cannot guarantee spatio-temporal consistency in a long period. The ignorance of correlational dynamics, convolutional locality and temporal comprehensiveness would limit predictive accuracy. In this paper, a novel Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADGCRNN) is proposed to improve traffic flow prediction in highway transportation. Three temporal resolutions of data sequence are effectively integrated by self-attention to extract characteristics; multi-dynamic graphs and their weights are dynamically created to compliantly combine the varying characteristics; a dedicated gated kernel emphasizing highly relative nodes is introduced on these complete graphs to reduce overfitting for graph convolution operations. Experiments on two public datasets show our work better than state-of-the-art baselines, and case studies of a real Web system prove practical benefit in highway transportation

    Floquet multipliers and the stability of periodic linear differential equations: a unified algorithm and its computer realization

    Full text link
    Floquet multipliers (characteristic multipliers) play significant role in the stability of the periodic equations. Based on the iterative method, we provide a unified algorithm to compute the Floquet multipliers (characteristic multipliers) and determine the stability of the periodic linear differential equations on time scales unifying discrete, continuous, and hybrid dynamics. Our approach is based on calculating the value of A and B (see Theorem 3.1), which are the sum and product of all Floquet multipliers (characteristic multipliers) of the system, respectively. We obtain an explicit expression of A (see Theorem 4.1) by the method of variation and approximation theory and an explicit expression of B by Liouville's formula. Furthermore, a computer program is designed to realize our algorithm. Specifically, you can determine the stability of a second order periodic linear system, whether they are discrete, continuous or hybrid, as long as you enter the program codes associated with the parameters of the equation. In fact, few literatures have dealt with the algorithm to compute the Floquet multipliers, not mention to design the program for its computer realization. Our algorithm gives the explicit expressions of all Floquet multipliers and our computer program is based on the approximations of these explicit expressions. In particular, on an arbitrary discrete periodic time scale, we can do a finite number of calculations to get the explicit value of Floquet multipliers (see Theorem 4.2). Therefore, for any discrete periodic system, we can accurately determine the stability of the system even without computer! Finally, in Section 6, several examples are presented to illustrate the effectiveness of our algorithm

    ASPiRe:Adaptive Skill Priors for Reinforcement Learning

    Full text link
    We introduce ASPiRe (Adaptive Skill Prior for RL), a new approach that leverages prior experience to accelerate reinforcement learning. Unlike existing methods that learn a single skill prior from a large and diverse dataset, our framework learns a library of different distinction skill priors (i.e., behavior priors) from a collection of specialized datasets, and learns how to combine them to solve a new task. This formulation allows the algorithm to acquire a set of specialized skill priors that are more reusable for downstream tasks; however, it also brings up additional challenges of how to effectively combine these unstructured sets of skill priors to form a new prior for new tasks. Specifically, it requires the agent not only to identify which skill prior(s) to use but also how to combine them (either sequentially or concurrently) to form a new prior. To achieve this goal, ASPiRe includes Adaptive Weight Module (AWM) that learns to infer an adaptive weight assignment between different skill priors and uses them to guide policy learning for downstream tasks via weighted Kullback-Leibler divergences. Our experiments demonstrate that ASPiRe can significantly accelerate the learning of new downstream tasks in the presence of multiple priors and show improvement on competitive baselines.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022

    XSkill: Cross Embodiment Skill Discovery

    Full text link
    Human demonstration videos are a widely available data source for robot learning and an intuitive user interface for expressing desired behavior. However, directly extracting reusable robot manipulation skills from unstructured human videos is challenging due to the big embodiment difference and unobserved action parameters. To bridge this embodiment gap, this paper introduces XSkill, an imitation learning framework that 1) discovers a cross-embodiment representation called skill prototypes purely from unlabeled human and robot manipulation videos, 2) transfers the skill representation to robot actions using conditional diffusion policy, and finally, 3) composes the learned skill to accomplish unseen tasks specified by a human prompt video. Our experiments in simulation and real-world environments show that the discovered skill prototypes facilitate both skill transfer and composition for unseen tasks, resulting in a more general and scalable imitation learning framework. The benchmark, code, and qualitative results are on https://xskill.cs.columbia.edu

    Efficient Core-selecting Incentive Mechanism for Data Sharing in Federated Learning

    Full text link
    Federated learning is a distributed machine learning system that uses participants' data to train an improved global model. In federated learning, participants cooperatively train a global model, and they will receive the global model and payments. Rational participants try to maximize their individual utility, and they will not input their high-quality data truthfully unless they are provided with satisfactory payments based on their data quality. Furthermore, federated learning benefits from the cooperative contributions of participants. Accordingly, how to establish an incentive mechanism that both incentivizes inputting data truthfully and promotes stable cooperation has become an important issue to consider. In this paper, we introduce a data sharing game model for federated learning and employ game-theoretic approaches to design a core-selecting incentive mechanism by utilizing a popular concept in cooperative games, the core. In federated learning, the core can be empty, resulting in the core-selecting mechanism becoming infeasible. To address this, our core-selecting mechanism employs a relaxation method and simultaneously minimizes the benefits of inputting false data for all participants. However, this mechanism is computationally expensive because it requires aggregating exponential models for all possible coalitions, which is infeasible in federated learning. To address this, we propose an efficient core-selecting mechanism based on sampling approximation that only aggregates models on sampled coalitions to approximate the exact result. Extensive experiments verify that the efficient core-selecting mechanism can incentivize inputting high-quality data and stable cooperation, while it reduces computational overhead compared to the core-selecting mechanism

    Using function approximation for personalized point-of-interest recommendation

    Get PDF
    Point-of-interest (POI) recommender system encourages users to share their locations and social experience through check-ins in online location-based social networks. A most recent algorithm for POI recommendation takes into account both the location relevance and diversity. The relevance measures users’ personal preference while the diversity considers location categories. There exists a dilemma of weighting these two factors in the recommendation. The location diversity is weighted more when a user is new to a city and expects to explore the city in the new visit. In this paper, we propose a method to automatically adjust the weights according to user’s personal preference. We focus on investigating a function between the number of location categories and a weight value for each user, where the Chebyshev polynomial approximation method using binary values is applied. We further improve the approximation by exploring similar behavior of users within a location category. We conduct experiments on five real-world datasets, and show that the new approach can make a good balance of weighting the two factors therefore providing better recommendation
    • …
    corecore