1,805 research outputs found

    Inhibition of TNF-α and IL-1 by compounds from selected plants for rheumatoid arthritis therapy: In vivo and in silico studies

    Get PDF
    Purpose: To investigate the inhibitory activities of herbal compounds from Curcuma longa, Sophora japonica and Camellia sinensis against tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) using in vivo and in silico tools.Methods: The extracts of the medicinal herbs (Curcuma longa, Sophora japonica and Camellia sinensis) were evaluated for immune-modulatory activities based using neutrophil oxidative burst assay. The compounds present in the medicinal herbs were screened for their inhibitory effects against TNF-α (PDB ID: 2AZ5) and IL-1 (PDB ID: 2L5X) using Molegro Virtual Docker 6.0 (MVD). The stabilities of the top docking poses were confirmed by Molecular Dynamics (MD) simulation run for 20 nanoseconds (ns).Results: The herbal compounds exerted strong inhibitory effects against TNF-α (PDB ID: 2AZ5) and IL- 1 (PDB ID: 2L5X), implying their therapeutic potential for use in rheumatoid arthritis (RA). Of the compounds, curcumin diglucoside and curcumin monoglucoside showed the strongest inhibitory effects on monocytes, with inhibitory levels of 82.75 and 81.34 %, respectively, while eugenin had the weakest inhibitory activity (11.12 %). In addition, molecular docking scores were consistent with the in vivo results, and revealed strong inhibitory effects of curcumin diglucoside and curcumin monoglucoside against TNF-α and IL-1.Conclusion: Herbal compounds present in Curcuma longa, Sophora japonica and Camellia sinensis possess strong inhibitory effects against the pro-inflammatory cytokines TNF-α and IL-1. Thus, these compounds have therapeutic potentials that can be exploited for the treatment of RA.Keywords: Curcuma longa, Sophora japonica, Camellia sinensis, Rheumatoid arthritis, Cytokines, TNF-α, IL-1, Immuno-modulation, Molecular dockin

    Reservoir Characterization during Underbalanced Drilling of Horizontal Wells Based on Real-Time Data Monitoring

    Get PDF
    In this work, a methodology for characterizing reservoir pore pressure and permeability during underbalanced drilling of horizontal wells was presented. The methodology utilizes a transient multiphase wellbore flow model that is extended with a transient well influx analytical model during underbalanced drilling of horizontal wells. The effects of the density behavior of drilling fluid and wellbore heat transfer are considered in our wellbore flow model. Based on Kneissl’s methodology, an improved method with a different testing procedure was used to estimate the reservoir pore pressure by introducing fluctuations in the bottom hole pressure. To acquire timely basic data for reservoir characterization, a dedicated fully automated control real-time data monitoring system was established. The methodology is applied to a realistic case, and the results indicate that the estimated reservoir pore pressure and permeability fit well to the truth values from well test after drilling. The results also show that the real-time data monitoring system is operational and can provide accurate and complete data set in real time for reservoir characterization. The methodology can handle reservoir characterization during underbalanced drilling of horizontal wells

    3,4-O-(2,3-Dimethoxy­butane-2,3-di­yl)-S-(4-methyl­phen­yl)-1-thia-α-d-manno­pyran­oside

    Get PDF
    In the title mol­ecule, C19H28O7S, the six-membered manno­pyran­oside and dioxane rings both display typical chair conformations. In the crystal structure, the hydr­oxy groups are involved in inter­molecular hydrogen bonds, which link the mol­ecules into chains extended along the b axis

    Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Get PDF
    Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison
    corecore