1,140 research outputs found

    Concept Discovery and Argument Bundles in the Experience Web

    Get PDF
    In this paper we focus on a particular interesting web user-generated content: people¿s experiences. We extend our previous work on aspect extraction and sentiment analysis and propose a novel approach to create a vocabulary of basic level concepts with the appropriate granularity to characterize a set of products. This concept vocabulary is created by analyzing the usage of the aspects over a set of reviews, and allows us to find those features with a clear positive and negative polarity to create the bundles of arguments. The argument bundles allow us to define a concept-wise satisfaction degree of a user query over a set of bundles using the notion of fuzzy implication, allowing the reuse experiences of other people to the needs a specific user. © Springer International Publishing AG 2016.This research has been partially supported by NASAID (CSIC Intramural 201550E022).Peer Reviewe

    Highly Stable Perovskite Supercrystals via Oil-in-Oil Templating

    Get PDF
    Inorganic perovskites display an enticing foreground for their wide range of optoelectronic applications. Recently, supercrystals (SCs) of inorganic perovskite nanocrystals (NCs) have been reported to possess highly ordered structure as well as novel collective optical properties, opening new opportunities for efficient films. Here, we report the large-scale assembly control of spherical, cubic, and hexagonal SCs of inorganic perovskite NCs through templating by oil-in-oil emulsions. We show that an interplay between the roundness of the cubic NCs and the tension of the confining droplet surface sets the superstructure morphology, and we exploit this interplay to design dense hyperlattices of SCs. The SC films show strongly enhanced stability for at least two months without obvious structural degradation and minor optical changes. Our results on the controlled large-scale assembly of perovskite NC superstructures provide new prospects for the bottom-up production of optoelectronic devices based on the microfluidic production of mesoscopic building blocks

    The role of survivin in angiogenesis during zebrafish embryonic development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is the smallest member of the inhibitor of apoptosis (IAP) gene family. Recently, the zebrafish <it>survivin-1 </it>gene has been cloned, showing remarkable sequence identity and similarity over the BIR domain compared with human and mouse <it>survivin </it>gene. Here we investigated the role of survivin in angiogenesis during zebrafish development. Morpholinos (MOs) targeting the 5' untranslated region (UTR) (Sur<sub>UTR</sub>) and sequences flanking the initiation codon (Sur<sub>ATG</sub>) of zebrafish <it>survivin-1 </it>gene were injected into embryos at 1–4 cell stage. Vasculature was examined by microangiography and GFP expression in <it>Tg(fli1:EGFP)</it><sup><it>y</it>1 </sup>embryos. Results: In embryos co-injected with Sur<sub>UTR </sub>and Sur<sub>ATG</sub>-MOs, vasculogenesis was intact but angiogenesis was markedly perturbed, especially in the inter-segmental vessels (ISV) and dorsal longitudinal anastomotic vessels (DLAV) of the trunk, the inner optic circle and optic veins of developing eyes and the sub-intestinal vessels. Apoptosis was increased, as shown by TUNEL staining and increase in caspase-3 activity. Efficacy of Sur<sub>UTR </sub>and Sur<sub>ATG</sub>-MOs was demonstrated by translation inhibition of co-injected 5'UTR survivin:GFP plasmids. The phenotypes could be recapitulated by splice-site MO targeting the exon2-intron junction of <it>survivin </it>gene and rescued by <it>survivin </it>mRNA. Injection of human vascular endothelial growth factor (VEGF) protein induced ectopic angiogenesis and increased survivin expression, whereas treatment with a VEGF receptor inhibitor markedly reduced angiogenesis and suppressed survivin expression. Conclusion: Survivin is involved in angiogenesis during zebrafish development and may be under VEGF regulation.</p

    Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by dystrophin gene mutations leading to skeletal muscle weakness and wasting. Dystrophin is enriched at the neuromuscular junction (NMJ), but how NMJ abnormalities contribute to DMD pathogenesis remains unclear. Here, we combine transcriptome analysis and modeling of DMD patient-derived neuromuscular circuits with CRISPR-corrected isogenic controls in compartmentalized microdevices. We show that NMJ volumes and optogenetic motor neuron-stimulated myofiber contraction are compromised in DMD neuromuscular circuits, which can be rescued by pharmacological inhibition of TGFβ signaling, an observation validated in a 96-well human neuromuscular circuit coculture assay. These beneficial effects are associated with normalization of dysregulated gene expression in DMD myogenic transcriptomes affecting NMJ assembly (e.g., MUSK) and axon guidance (e.g., SLIT2 and SLIT3). Our study provides a new human microphysiological model for investigating NMJ defects in DMD and assessing candidate drugs and suggests that enhancing neuromuscular connectivity may be an effective therapeutic strategy

    Template Synthesis of Carbon Nanofibers Containing Linear Mesocage Arrays

    Get PDF
    Carbon nanofibers containing linear mesocage arrays were prepared via evaporation induced self-assembly method within AAO template with an average channel diameter of about 25 nm. The TEM results show that the mesocages have an elongated shape in the transversal direction. The results of N2 adsorption–desorption analysis indicate that the sample possesses a cage-like mesoporous structure and the average mesopore size of the sample is about 18 nm

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material

    Quantifying Inactive Lithium in Lithium Metal Batteries

    Get PDF
    Inactive lithium (Li) formation is the immediate cause of capacity loss and catastrophic failure of Li metal batteries. However, the chemical component and the atomic level structure of inactive Li have rarely been studied due to the lack of effective diagnosis tools to accurately differentiate and quantify Li+ in solid electrolyte interphase (SEI) components and the electrically isolated unreacted metallic Li0, which together comprise the inactive Li. Here, by introducing a new analytical method, Titration Gas Chromatography (TGC), we can accurately quantify the contribution from metallic Li0 to the total amount of inactive Li. We uncover that the Li0, rather than the electrochemically formed SEI, dominates the inactive Li and capacity loss. Using cryogenic electron microscopies to further study the microstructure and nanostructure of inactive Li, we find that the Li0 is surrounded by insulating SEI, losing the electronic conductive pathway to the bulk electrode. Coupling the measurements of the Li0 global content to observations of its local atomic structure, we reveal the formation mechanism of inactive Li in different types of electrolytes, and identify the true underlying cause of low Coulombic efficiency in Li metal deposition and stripping. We ultimately propose strategies to enable the highly efficient Li deposition and stripping to enable Li metal anode for next generation high energy batteries

    GPR50 Interacts with TIP60 to Modulate Glucocorticoid Receptor Signalling

    Get PDF
    GPR50 is an orphan G-protein coupled receptor most closely related to the melatonin receptors. The physiological function of GPR50 remains unclear, although our previous studies implicate the receptor in energy homeostasis. Here, we reveal a role for GPR50 as a signalling partner and modulator of the transcriptional co-activator TIP60. This interaction was identified in a yeast-two-hybrid screen, and confirmed by co-immunoprecipitation and co-localisation of TIP60 and GPR50 in HEK293 cells. Co-expression with TIP60 increased perinuclear localisation of full length GPR50, and resulted in nuclear translocation of the cytoplasmic tail of the receptor, suggesting a functional interaction of the two proteins. We further demonstrate that GPR50 can enhance TIP60-coactiavtion of glucocorticoid receptor (GR) signalling. In line with in vitro results, repression of pituitary Pomc expression, and induction of gluconeogenic genes in liver in response to the GR agonist, dexamethasone was attenuated in Gpr50−/− mice. These results identify a novel role for GPR50 in glucocorticoid receptor signalling through interaction with TIP60

    Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm

    Full text link
    The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement of the negative muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the first uncertainty is statistical and the second is sytematic, is consistend with previous measurements of the anomaly for the positive and negative muon. The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10} (0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to reflect referee comments. Text further revised to reflect additional referee comments and a corrected Fig. 3 replaces the older versio
    • …
    corecore