53 research outputs found

    GenKIE: Robust Generative Multimodal Document Key Information Extraction

    Full text link
    Key information extraction (KIE) from scanned documents has gained increasing attention because of its applications in various domains. Although promising results have been achieved by some recent KIE approaches, they are usually built based on discriminative models, which lack the ability to handle optical character recognition (OCR) errors and require laborious token-level labelling. In this paper, we propose a novel generative end-to-end model, named GenKIE, to address the KIE task. GenKIE is a sequence-to-sequence multimodal generative model that utilizes multimodal encoders to embed visual, layout and textual features and a decoder to generate the desired output. Well-designed prompts are leveraged to incorporate the label semantics as the weakly supervised signals and entice the generation of the key information. One notable advantage of the generative model is that it enables automatic correction of OCR errors. Besides, token-level granular annotation is not required. Extensive experiments on multiple public real-world datasets show that GenKIE effectively generalizes over different types of documents and achieves state-of-the-art results. Our experiments also validate the model's robustness against OCR errors, making GenKIE highly applicable in real-world scenarios.Comment: Accepted by EMNLP 2023, Findings pape

    Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces

    Get PDF
    Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.Comment: 32 pages, 6 figure

    Biomedical Named Entity Recognition via Dictionary-based Synonym Generalization

    Full text link
    Biomedical named entity recognition is one of the core tasks in biomedical natural language processing (BioNLP). To tackle this task, numerous supervised/distantly supervised approaches have been proposed. Despite their remarkable success, these approaches inescapably demand laborious human effort. To alleviate the need of human effort, dictionary-based approaches have been proposed to extract named entities simply based on a given dictionary. However, one downside of existing dictionary-based approaches is that they are challenged to identify concept synonyms that are not listed in the given dictionary, which we refer as the synonym generalization problem. In this study, we propose a novel Synonym Generalization (SynGen) framework that recognizes the biomedical concepts contained in the input text using span-based predictions. In particular, SynGen introduces two regularization terms, namely, (1) a synonym distance regularizer; and (2) a noise perturbation regularizer, to minimize the synonym generalization error. To demonstrate the effectiveness of our approach, we provide a theoretical analysis of the bound of synonym generalization error. We extensively evaluate our approach on a wide range of benchmarks and the results verify that SynGen outperforms previous dictionary-based models by notable margins. Lastly, we provide a detailed analysis to further reveal the merits and inner-workings of our approach

    Variational Bayesian Context-aware Representation for Grocery Recommendation

    Get PDF
    Grocery recommendation is an important recommendation use-case, which aims to predict which items a user might choose to buy in the future, based on their shopping history. However, existing methods only represent each user and item by single deterministic points in a low-dimensional continuous space. In addition, most of these methods are trained by maximizing the co-occurrence likelihood with a simple Skip-gram-based formulation, which limits the expressive ability of their embeddings and the resulting recommendation performance. In this paper, we propose the Variational Bayesian Context-Aware Representation (VBCAR) model for grocery recommendation, which is a novel variational Bayesian model that learns the user and item latent vectors by leveraging basket context information from past user-item interactions. We train our VBCAR model based on the Bayesian Skip-gram framework coupled with the amortized variational inference so that it can learn more expressive latent representations that integrate both the non-linearity and Bayesian behaviour. Experiments conducted on a large real-world grocery recommendation dataset show that our proposed VBCAR model can significantly outperform existing state-of-the-art grocery recommendation methods

    LaCViT: A Label-aware Contrastive Training Framework for Vision Transformers

    Full text link
    Vision Transformers have been incredibly effective when tackling computer vision tasks due to their ability to model long feature dependencies. By using large-scale training data and various self-supervised signals (e.g., masked random patches), vision transformers provide state-of-the-art performance on several benchmarking datasets, such as ImageNet-1k and CIFAR-10. However, these vision transformers pretrained over general large-scale image corpora could only produce an anisotropic representation space, limiting their generalizability and transferability to the target downstream tasks. In this paper, we propose a simple and effective Label-aware Contrastive Training framework LaCViT, which improves the isotropy of the pretrained representation space for vision transformers, thereby enabling more effective transfer learning amongst a wide range of image classification tasks. Through experimentation over five standard image classification datasets, we demonstrate that LaCViT-trained models outperform the original pretrained baselines by around 9% absolute Accuracy@1, and consistent improvements can be observed when applying LaCViT to our three evaluated vision transformers

    CLEX: Continuous Length Extrapolation for Large Language Models

    Full text link
    Transformer-based Large Language Models (LLMs) are pioneering advances in many natural language processing tasks, however, their exceptional capabilities are restricted within the preset context window of Transformer. Position Embedding (PE) scaling methods, while effective in extending the context window to a specific length, demonstrate either notable limitations in their extrapolation abilities or sacrificing partial performance within the context window. Length extrapolation methods, although theoretically capable of extending the context window beyond the training sequence length, often underperform in practical long-context applications. To address these challenges, we propose Continuous Length EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling factor, thereby overcoming the constraints of current PE scaling methods designed for specific lengths. Moreover, by extending the dynamics to desired context lengths beyond the training sequence length, CLEX facilitates the length extrapolation with impressive performance in practical tasks. We demonstrate that CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training and inference latency. Experimental results reveal that CLEX can effectively extend the context window to over 4x or almost 8x training length, with no deterioration in performance. Furthermore, when evaluated on the practical LongBench benchmark, our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k

    Profiling users for question answering communities via flow-based constrained co-embedding model

    Get PDF
    In this article, we study the task of user profiling in question answering communities (QACs). Previous user profiling algorithms suffer from a number of defects: they regard users and words as atomic units, leading to the mismatch between them; they are designed for other applications but not for QACs; and some semantic profiling algorithms do not co-embed users and words, leading to making the affinity measurement between them difficult. To improve the profiling performance, we propose a neural Flow-based Constrained Co-embedding Model, abbreviated as FCCM. FCCM jointly co-embeds the vector representations of both users and words in QACs such that the affinities between them can be semantically measured. Specifically, FCCM extends the standard variational auto-encoder model to enforce the inferred embeddings of users and words subject to the voting constraint, i.e., given a question and the users who answer this question in the community, representations of the users whose answers receive more votes are closer to the representations of the words associated with these answers, compared with representations of whose receiving fewer votes. In addition, FCCM integrates normalizing flow into the variational auto-encoder framework to avoid the assumption that the distributions of the embeddings are Gaussian, making the inferred embeddings fit the real distributions of the data better. Experimental results on a Chinese Zhihu question answering dataset demonstrate the effectiveness of our proposed FCCM model for the task of user profiling in QACs
    • …
    corecore