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Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and

relations of knowledge graphs into low-dimensional semantic spaces for awide spectrum of applications such as

link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review

of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification

to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic

perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions

of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We

further discuss different KGE methods over the three categories, as well as summarise how spatial advantages

work over different embedding needs. By collating the experimental results from downstream tasks, we also

explore the advantages of mathematical space in different scenarios and the reasons behind them. We further

state some promising research directions from a representation space perspective, with which we hope to

inspire researchers to design their KGE models as well as their related applications with more consideration

of their mathematical space properties.
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1 Introduction
Knowledge Graphs are a type of multi-relational graphs that store factual knowledge in real-

world. Nodes in KGs represent real-world entities (e.g., names, events and products) and edges

represent the relationships between entities. Normally, a KG can be efficiently stored as knowledge

triples, where each triple consists of two entities and one factual relation between them (i.e.,

<head entity, relation, tail entity>). For example, in the triple <RNA virus, subclass, COVID-19>,
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Fig. 1. An illustration of three types of KG structures. (a) shows the most common chain structure in KGs,
which can usually be directly modelled in Euclidean space (e.g., TransE, TransH, etc.). (b) is a ring structure of
KGs that can be captured in hypersphere space [21]. (c) stands for hierarchical structure which is usually
encoded in hyperbolic or spherical spaces [24, 157].

RNA virus and COVID-19 are real-world entities and subclass represents the relation between

RNA virus and COVID-19. Over the recent years, rapid growth has been witnessed in building

large-scale KGs, such as YAGO [155], Wikidata [174], Freebase [11] and DBepedia [3]. Due to their

effectiveness in storing and representing factual knowledge, they have been successfully applied in

question answering [148, 214], recommendation system [156, 239], information retrieval [49, 193]

and other domain-specific applications [94, 112]. Despite the KGs are effective in representing

structured factual information, they are difficult tomanipulate due to the large-scale and complicated

graph structure, i.e., the relationships between entities are intricate and complex, such as the ring

structure and hierarchy structure depicted in Figure 1c. Therefore, how to effectively and efficiently

extract and leverage useful information in large-scale KGs for downstream tasks, such as link

prediction [24, 158, 225] and entity classification [75, 202, 217], is a tough task. To tackle this

challenging task, the Knowledge Graph Embedding (KGE) technique was proposed, and has

been receiving a lot of attention in the machine learning community [14, 24, 68, 104, 119, 158]. The

essential idea of KGE is to learn to embed entities and relations of a KG into a low-dimensional space

(i.e. vectorial embeddings), where the embeddings are required to preserve the semantic meaning

and relational structure of the original KG. The learned embeddings of entities and relations can

then be leveraged to solve downstream applications, such as KG completion [1, 14, 190, 220, 224],

question answering [36, 103, 207, 214, 238], information extraction [42, 67, 105, 194, 234] and entity

classification [96, 153].

Many KGE techniques have been proposed to learn the embeddings of entities and relations in

KGs [76, 109, 158, 190, 196]. Some KGE methods propose to learn KG embeddings by preserving

relational patterns between entities in KGs. For example, in order to capture the transformation

relationships between entities, TransE [14] was proposed to embed KGs into Euclidean Space and
represent relations between entities as translation vectors between entity embeddings in the vector

space. Moreover, in order to preserve and infer other relational patterns including symmetry,

antisymmetry, inversion and composition in KGs, RotatE [158] was proposed to map KGs into

Complex Vector Space, where relations are represented as rotations between entities.

Another line of KGE methods proposes to learn KG embeddings by preserving structural patterns
of KGs. This line of works was motivated by the fact that large-scale KGs usually contain many

complex and compound structures. For example, in Figure 1, we provide an illustration of three

typical types of structure patterns in KGs, namely chain structure, ring structure and hierarchy

structure. In order to effectively capture the hierarchy structures in KGs, ATTH [24] was proposed

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.
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to embed KGs into Hyperbolic Space with trainable curvatures, where richer transformations can be

used to separate nodes than Euclidean space [126], while capturing logical patterns simultaneously.

In addition, someKGEmethods also try to embed KGs in othermathematical spaces tomodel some

desirable properties in KGs. For example, KG2E [65] is the first “density-based” embedding [173]

technique, which uses Gaussian distributions as embeddings instead of deterministic vectors, to

model the uncertainties of entities and relations. Moreover, TorusE [38] chooses a compact Lie Group
as its embedding manifold to deal with the regularisation problems, andModulE [23] also introduces

Group theory to model both entities and relations as group element, which can accommodate and

outperform most of the existing KGE models.

From the perspective of representation space, we found that the above KGE methods mostly

learn embeddings in different mathematical spaces, e.g., Euclidean space, Hyperbolic space and

Probability space, to capture different relational and structural patterns in KGs. Indeed, different

mathematical spaces have their unique strengths, which are beneficial to capture different patterns

and properties in KGs. Therefore, we argue that representation space plays a significant role in KGE

methods, as it determines the patterns and properties of KGs that can be captured and preserved

by KG embeddings. In addition to the KGE domain, some studies [18, 123, 134] also demonstrate

the importance of mathematical space in traditional machine learning.

Some surveys have been devoted to discussing traditional machine learning models from the

perspective of mathematical space [123, 134]. However, there is not yet a systematic review of KGE

methods from the perspective of mathematical space. Existing surveys about KGE methods focus

either on the encoding model or the applications of KGE methods. For example, Wang et al. [181]

classify KGE methods based on their embedding functions and categorise them into three folds:

translation-based models, semantic matching models and additional information-based models. Ji

et al. [77] provide a full-scaled view to introduce KGE from four aspects: representation learning,

scoring function, encoding models and auxiliary information. Lu et al. [114] survey KGE methods

with a concentration on utilising textual information.

Accordingly, in this paper we aim at providing a comprehensive survey on representation spaces for
knowledge graph embedding techniques, summarising different properties of representation spaces as
well as providing guidance for building KGE methods. In order to have a better understanding of KGE

methods from a novel spatial view, inspired by the fundamental mathematical space system, we

build a systematic, comprehensive and multi-angle categorisation to classify existing KGE methods

based on their representation spaces. Specifically, we propose to classify existing KGE methods into

three categories, namely Algebraic Structure, Geometric Structure and Analytical Structure.
These three structures have their own mathematical focus, but they are intrinsically linked and

jointly make the mathematical system more complete and concrete [32, 138]. Figure 2 provides an

overview of our classification framework and some representative KGE methods that belong to

each category (the detailed version can be found in Section 3). In this survey, we will introduce

the definitions and properties of the above three mathematical structures and introduce some

representative KGE methods that belong to these categories in detail. Moreover, we will summarise

the experimental results of different KGE methods and provide some suggestions and guidance for

building more expressive and powerful KGE methods. Furthermore, we will point out new trends

and further directions of KGE methods from the perspective of representation space.

Recently, LLMs such as T5 [140] and GPT-4
1
have achieved remarkable success in a variety

of natural language processing tasks, such as text generation [93], machine translation [91] and

question answering [74]. Despite their success in many applications, LLMs still suffer from the

following shortcomings: (1) They are known to suffer from the hallucination issue [7, 78], i.e.,

1
https://openai.com/gpt-4
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Fig. 2. Three perspectives and corresponding instances for introducing representation spaces in knowledge
graph embedding: (a) Algebraic Structure. (b) Geometric Structure. (c) Analytical Structure.

generating statements that are not factually correct. (2) Since LLMs are pretrained on some general

domain corpus, they may not generalise well on some domain-specific tasks, such as biomedical

tasks. (3) LLMs are black-box models and it is difficult for them to provide sufficient explainability

for their predictions, which is critical in some medical tasks [131]. In comparison, KGs store

factual knowledge about the real world in a structured way and may provide a potential solution

to address the shortcomings of LLMs. Indeed, there are some recent works that leverage KGs

to enhance the performance and explainability of LLMs. In order to alleviate the hallucination

issue, some work [143, 152, 187, 232] propose to incorporate KGs into the pretraining of LLMs

to encode factual knowledge. For example, the KEPLER [187] proposes to learn LLMs and KGE

in a unified manner, which is achieved by using a combination of KGE objective and masked

language modelling objective for training. Moreover, there are some works [107, 120, 215, 228] that

leverage domain-specific KGs to enhance the performance of LLMs on some domain-specific tasks.

For example, the MoP model [120] infuses the biomedical knowledge stored in the biomedical

knowledge graph UMLS [10] into different BERT models to enhance their performance on several

downstream biomedical tasks. Furthermore, there are also some works that leverage KGs to improve

the explainability of LLMs. One line of research focuses on using KGs for LLM probing, which aims

to understand the relational knowledge stored in the LLMs [80, 121, 137]. Particularly, LAMA [137]

is the first work to probe the relational knowledge in BERT using KGs. LAMA evaluates the

knowledge in BERT by converting facts in KGs into cloze statements and using LLMs to predict

the missing entity. Therefore, we believe KGs and KGEs are still useful in the context of LLMs

since they can be complementary to LLMs, which is helpful in improving the performance and

explainability of LLMs [131].
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To the best of our knowledge, we are the first survey to summarise KGE models by establishing

a comprehensive mathematical spatial architecture. To sum up, the contributions of our work can

be summarised as follows:

• This is the first paper that comprehensively surveys the relationships between mathematical

spaces and KGE techniques. Particularly, we summarise properties of different mathematical

spaces used in KGE methods, so as to clearly understand their mathematical properties for

different KGE approaches.

• We categorise existing KGE models according to their representation spaces, while providing

detailed descriptions and comparisons of these works from the perspective of mathematical

spaces.

• We provide ideas of space selection for the KGE task based on our analysis on the essen-

tial properties of different spaces, which could help researchers and practitioners better

understand the space characteristics, and provide guidance for building their KGE models

(including loss function, optimisations, etc.).

• We put forward some suggestions and future directions for the KGE tasks by showing

some unique properties in different mathematical spaces/structures. These properties can be

inspired and generalised to other scenarios such as natural language processing, computer

vision, etc., not only for the KGE task.

The remainder of this article is organised as follows. Section 2 introduces notations and the

rigorous definitions of fundamental mathematical spaces, as well as the relationships between them.

This section will provide some preliminary knowledge about various representation spaces, and

build connection between these spaces and the three key components of KGE models (i.e. embed-

ding mapping, score function and representation training). Since the fundamental mathematical

spaces could not cover diverse spaces used in existing KGE methods, we develop a systematic

and comprehensive framework to categorise KGE methods from the perspective of representation

space. To highlight the excellent effect that different mathematical features could give to KGE,

section 3 introduces the proposed classification category, properties of different spaces, as well

as summarise how spatial advantages work in KGE models. Subsequently, Section 4 introduces

some spatially related KG downstream tasks. Through the results, the advantages of mathematical

space in particular scenes and which features are critical to the tasks are well summarised. Finally,

we present our conclusion and future work in Section 5, in which we summarise the respective

strengths of three different mathematical structures and the reasons behind them, which will help

inspire us to construct state-of-the-art algorithms in more fields, no limited to KGE.

2 Preliminaries
In this section, we introduce the notations used throughout the paper, provide two lines of pre-

liminary knowledge related to our survey: knowledge graph embedding (KGE) and fundamental

mathematical spaces. Specifically, we introduce our notations in subsection 2.1, provide an overview

of knowledge graph embedding methods in subsection 2.2 and briefly introduce some basic mathe-

matical spaces and their relationships in subsection 2.3.

2.1 Notations and Mathematical Background
The definitions of some mathematical terminologies and symbols that appear in the text are shown

in Table 1. We denote mathematical spaces by blackboard bold characters (e.g., S denotes topological
space). Particularly, we use R and C to denote the field of real numbers and the field of complex

numbers, respectively. We represent scalars with normal characters (e.g., 𝑥 ∈ R denotes a real

scalar), while vectors and matrices are denoted by the bold lowercase characters (e.g., z ∈ R𝑛

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.
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Table 1. Descriptions of symbols and terminologies.

Symbol or Terminology Definition

∅ The set containing no elements is called an empty set ∅.

R𝑛 ,C𝑛 ...

Commonly, R𝑛 represents 𝑛-dimensional (Real) Vector Space, C𝑛 denotes

𝑛-dimensional Complex Vector Space. Other spaces’ symbols will be

explained in additional detail below.

S, 𝜏

A set S is a finite or infinite collection of objects in which order has no

significance, and multiplicity is generally also ignored. And the set 𝜏 is an

open set if every point in 𝜏 has a neighbourhood lying in the set.

Intersection(∩), union(∪)
The intersection of two sets A and B is the set of elements common to A and

B(A ∩B). The union of two sets A and B is the set obtained by combining

the members of each(A ∪B).

Field
A field is any set of elements that satisfies the field axioms for both addition

and multiplication and is a commutative division algebra.

Complete(ness)
A space is a complete metric space in which every Cauchy sequence is

convergent.

Complex conjugate
The complex conjugate of a complex number 𝑧 = 𝑎 + 𝑏𝑖 is defined to be

𝑧 = 𝑎 − 𝑏𝑖 .

Homeomorphism
A homeomorphism, also called a continuous transformation, is an equivalence

relation and one-to-one correspondence between points in two geometric

figures or topological spaces that is continuous in both directions.

denotes a real vector) and the bold uppercase characters (e.g., X ∈ R𝑚×𝑛
denotes a real-valued

matrix), respectively.

We represent a knowledge graph as G = {E,R, T}, where E denotes the set of entities (nodes), R

denotes the set of relations (the types of edges) and T represents the relational facts (edges) in the

knowledge graph. Facts observed in G are stored as a collection of triples: T = {(ℎ, 𝑟, 𝑡)}, where
each triple consists of a head entity ℎ ∈ E, a tail entity 𝑡 ∈ E, and a relation 𝑟 ∈ R between them,

e.g., <Beijing, isCapitalOf, China> represents the fact that Beijing is the capital of China. We also

use lower case and bold character to denote the embeddings of entities and relations. Specifically,

for a fact triple (ℎ, 𝑟, 𝑡), we represent the embeddings of head entity, tail entity and the relation

between them as h, t and r, respectively.

2.2 Knowledge Graph Embedding
Given a knowledge graph G, the goal of KGE is to learn a mapping function 𝑓 , which projects the entities
and relations in G into a dense and low-dimensional space. The learned embeddings are expected to
preserve the structural and attribute information of the original knowledge graph as much as possible,
such that they can be leveraged to effectively and efficiently infer the relationships between entities.

Normally, the paradigm of learning knowledge graph embeddings consists of three components,

namely embedding mapping, score function and representation training. The embedding mapping
component projects the entities and relations to a low-dimensional space and represents them as

embedding vectors. A variety of mathematical spaces have be used to define the embeddings of

entities and relations. For example, TransE [14] proposes to learn embeddings in Euclidean space to

model the transformation of entities, while RotatE [158] proposes to embed KGs into complex vector

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.
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space to model symmetry/antisymmetry of relations. Additionally, many other mathematical spaces

have also been leveraged in KGEs, such as probability space [65, 197], hyperbolic space [4, 132]

and spherical space [21, 37, 198]. The main focus of this survey is to provide an thorough review

of KGE methods from the perspective of embedding space, summarising different properties of

different embedding spaces and providing guidance for building KGE methods.

The score function is another key component of KGE methods. Score function, denoted as 𝑠 (·), is
a function defined on the mapped embedding space, which is used to measure the plausibility that

a triple holds. Specifically, the score function is defined on the embedding vectors of a triple, i.e.,

𝑠 (h, r, t), which is supposed to assign higher scores to positive triples (real facts) while assigning

lower scores to negative triples (false facts). Based on different representation spaces, different score

functions have been proposed to measure the plausibility of triples [14, 158, 198]. For example, in

Euclidean representation space, the translation-based score function 𝑠 (h, r, t) = −||h + r− t| |1/2 [14]

is widely used to measure the confidence that a triple is positive. Based on the different properties

of representation spaces, different score functions can be defined. Please refer to Section 3 for

detailed discussion of different score functions.

The representation training component of KGE methods aims to learn the entity and relation

embeddings by maximising the scores of positive triples while minimising the scores of negative

triples. Since it is infeasible to obtain the precise positive and negative triples in a knowledge graph,

one convention in the field of KGE is to regard observed triples, i.e., T, as positive examples while

sampling unobserved triples, i.e., T−
, as negative examples [14, 190]. The negative triples can be

generated by randomly replacing the head entity or the tail entity in an observed triple with a

random entity sampled from the entity set, i.e.,

T− ={(ℎ−, 𝑟 , 𝑡) | (ℎ, 𝑟, 𝑡) ∈ T ∧ (ℎ−, 𝑟 , 𝑡) ∉ T ∧ ℎ− ∈ E}∪
{(ℎ, 𝑟, 𝑡−) | (ℎ, 𝑟, 𝑡) ∈ T ∧ (ℎ, 𝑟, 𝑡−) ∉ T ∧ 𝑡− ∈ E}. (1)

Given the positive and negative triples (i.e. T and T−
), various objective functions can be used to

train representations of KGE models. For example, the margin-based ranking loss [14, 75, 109, 190]
is a widely adopted objective function for training representations of entities and relations. It is

defined as:

L𝑚𝑎𝑟𝑔𝑖𝑛 =
∑︁

(ℎ,𝑟,𝑡 ) ∈T

∑︁
(ℎ−,𝑟 ,𝑡− ) ∈T−

max (0, 𝛾 − 𝑠 (h, r, t) + 𝑠 (h−, r, t−)) , (2)

where 𝛾 is a margin hyperparameter. The margin-based ranking loss assumes that observed triples

are more valid than unobserved triples, and therefore favours higher scores of observed triples T

than unobserved triples T−
. Another widely used objective function for learning knowledge graph

embeddings is the cross-entropy loss [33, 85, 158, 168], which is defined as:

L𝐶𝐸 =
∑︁

(ℎ,𝑟,𝑡 ) ∈T∪T−

log(1 + exp(−𝑦ℎ𝑟𝑡 · 𝑠 (h, r, t))), (3)

where 𝑦ℎ𝑟𝑡 ∈ {−1, 1} is the label of a triple (ℎ, 𝑟, 𝑡), and 𝑦ℎ𝑟𝑡 = 1 indicates that the triple is a positive

example while 𝑦ℎ𝑟𝑡 = −1 indicates that the triple is a negative example. After defining the objective

function, the knowledge graph embeddings are learned by minimising the objective function

via stochastic optimisation, where a small batch of positive examples and negative examples are

sampled for optimisation at each training iteration. It is worth noting that most KGE models [14,

129, 154, 168, 209] have additional constraints that the norm of knowledge graph embeddings is

less than or equal to 1. Such constraints can prevent the model to trivially minimise the objective

function by simply increasing the norm of the embedding vectors [14].

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.
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2.3 Fundamental Mathematical Spaces
In general, various types of fundamental mathematical spaces have been widely used for represen-

tation learning in computer science. However, there is no easy way to elaborate all these spaces

due to the complex inclusion and overlapping of these spaces. Here we first introduce some basic

spaces through algebraic definitions. We start by introducing the topological space, which is the

most basic mathematical space. Topological Space is a kind of mathematical structure defined on a

set, from which the concept of convergence, connectivity, continuity etc., are introduced [145]. A

special case of topological space is theMetric Space, where the distance between any elements in the

set is introduced in the topological space. The Vector Space, also referred to as Linear Space [145], is
another fundamental space that are widely used in representation learning. The vector space is a

set that defines both addition andmultiplication satisfying eight operation conditions (see § 2.3.2 for

details). On the basis of vector space, Normed Vector Space is defined, which additionally introduces

the concept of norm to define the length between elements in the set. Particularly, Inner Product
Space is a special normed vector space, which additionally introduce inner product to define the
concept of angle between elements in the set. Euclidean Space is a finite dimensional inner product

space which is widely used nowadays [87, 145].

The inclusion relationship of the above spaces can be summarised by: {Inner Product Vector Space} ⊂
{Normed Vector Space} ⊂ {Metric Space} ⊂ {Topological Space}. Going from the left to the right,

each category is carried by the next one. In inner product vector space, we can use inner product
to express both the length and angle of vectors, since the inner product induces a norm. But in a

normed vector space, we could just measure the distance between two points through space metric.

Then in metric space and topological space, there is less basic concept that can be measured. In

another word, the “capacity” of spaces is getting weaker. To sum up, the inner product induces
norm, norm induces distance, and distance induces topology, therefore: every inner product space is a
normed vector space, every normed vector space is a metric space and every metric space is a topological
space. It should be noticed that linear space is an algebraic structure while topological space is a

topological structure. So they are not juxtaposed since they are considered in different categories.

The relationships between different mathematical spaces are presented in Figure 3. In what follows,

we provide rigorous definitions of above mathematical spaces, which also be summarised in Table 2.

2.3.1 Topological Space

Definition 2.1. A topological space is a set S in which a collection of subsets 𝜏 (called open sets,
see Table 1) is specified, with the following properties [145]: S is open, ∅ is open, the intersection

(see Table 1) of any two open sets is open, and the union of every collection of open sets is open.

Such a collection 𝜏 is called a topology on S. When clarity seems to demand it, the topological

space corresponding to the topology 𝜏 will be written as (S, 𝜏) rather than S. Metric space, uniform

space [90, 167] are examples of topological space.

2.3.2 Vector Space (Linear Space)

Definition 2.2. Let Φ stands for either R or C, i.e., real field or complex filed (See Table 1). A scalar
is a member of the scalar field Φ. A vector space over Φ is a set X, whose elements are called vectors,

and in which two operations, addition and scalar multiplication, are defined, with the following

algebraic properties [145]:

(a) For any two vectors x and y in X, the addition between them is represented as x + y, with
the following properties:

x + y = y + x and x + (y + z) = (x + y) + z. (4)
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Fig. 3. The relationships between different mathematical spaces. The basic spatial relationship is
{Inner Product Vector Space} ⊂ {Normed Vector Space} ⊂ {Metric Space} ⊂ {Topological Space}. In addi-
tion, we tease out more detailed relations, such as the complete case of Inner Product Space is Hilbert Space.

The vector space X contains a unique vector 0 (the zero vector or origin of X) such that

x + 0 = x for every x ∈ X, and each x ∈ X corresponds a unique vector −x such that

x + (−x) = 0.
(b) For any scalar 𝛼, 𝛽 ∈ Φ and vector x ∈ X, the scalar multiplication between them is denoted

as 𝛼x, with the following properties:

𝛼 (x + y) = 𝛼x + 𝛼y, (𝛼 + 𝛽)x = 𝛼x + 𝛽x. (5)

Like the zero vector in vector space, the zero element of the scalar field can also be defined in

a similar way, which is denoted as 0.

Particularly, a real vector space is the one for which Φ = R, while a complex vector space is the one
for which Φ = C. In the following, any statements about vector spaces in which the scalar field is

not explicitly specified means that they can be applied to both real vector space and complex space.

2.3.3 Normed Space

Definition 2.3. A vector space X is said to be a normed space if each vector x ∈ X is associated

with a nonnegative real number ∥x∥, called the norm of x [145], in such a way that:

(a) ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x and y in X,
(b) ∥𝛼x∥ = |𝛼 | ∥x∥ if x ∈ X and 𝛼 is a scalar,

(c) ∥x∥ > 0 if x ≠ 0.
The word “norm” is also used to denote the function that maps x to ∥x∥. Every normed space can

be regarded as a particular metric space, in which the distance 𝑑 (x, y) between x and y is defined

as ∥x − y∥. The properties of the distance function 𝑑 in metric space are:

(a) 0 ≤ 𝑑 (x, y) < ∞ for all x and y,
(b) 𝑑 (x, y) = 0 if and only if x = y,
(c) 𝑑 (x, y) = 𝑑 (y, x) for all x and y,
(d) 𝑑 (x, z) ≤ 𝑑 (x, y) + 𝑑 (y, z) for all x, y, z.
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Table 2. Descriptions of four basic spaces in mathematics: Vector Space, Normed Space, Inner Product Space
and Topological Space. It is important to note that they are listed here for a general introduction, not because
they are juxtaposed. The specific relationships between these spaces can found in §2.3.

Space Description Property

Topological Space a geometrical space in which closeness is
defined.

• open set

Vector Space a set of vectors in which two operations, ad-
dition and scalar multiplication are de-

fined.

• addition
• multiplication

Normed Space a vector space over the real or complex num-

bers, on which a norm is defined.

• addition
• multiplication
• norm: ∥𝑥 ∥

Inner Product Space a vector space with a binary operation called

an inner product.

• addition
• multiplication
• inner product:⟨𝑥, 𝑥 ⟩

Euclidean Space a commonly used finite dimensional inner

product space over real numbers.

• addition
• multiplication
• inner product:⟨𝑥, 𝑥 ⟩

Manifold a topological space which is locally Eu-
clidean.

• each point has

a certain neighbourhood

A Banach Space is a special normed space which is complete (see Table 1) in the metric defined by

its norm, which means that every Cauchy sequence is required to converge. (A Cauchy sequence is

a sequence whose elements become arbitrarily close to each other as the sequence progresses [87].)

2.3.4 Inner Product Space

Definition 2.4. A complex vector space H is called an inner product space or unitary space if each
ordered pair of vectors x and y in H is associated with a complex number ⟨x, y⟩, called the inner
product or scalar product of x and y, such that the following rules hold [145]:

(a) ⟨y, x⟩ = ⟨x, y⟩ (The bar denotes complex conjugation (see Table 1)),

(b) ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩,
(c) ⟨𝛼x, y⟩= 𝛼 ⟨x, y⟩ if x ∈ H, y ∈ H, 𝛼 ∈ C,
(d) ⟨x, x⟩ ≥ 0 for all x ∈ H,
(e) ⟨x, x⟩ = 0 only if x = 0.

Particularly, if the normed space is complete, it is called a Hilbert Space.

2.3.5 Euclidean Space

Definition 2.5. Euclidean space is the basic space of geometry, intended to represent physical

space [6]. Generally, Euclidean space refers to Euclidean vector space, which is a finite dimensional

inner product space over real numbers. Based on the algebraic definition of Euclidean space, a

plane or solid (i.e. Euclidean geometry) can be well represented by lines and points.

2.3.6 Manifold

Definition 2.6. A topological spaceM is said to be amanifold or locally Euclidean of dimension n if

every point ofM has a neighbourhood inM that is homeomorphic (see Table 1) to an open subset of
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𝑛-dimensional Euclidean space [90]. Manifolds constitute a generalisation of objects and the concept

of a manifold is central to many parts of geometry since it allows complicated structures, such as

sphere, curved surface, etc. to be described in terms of well-understood topological properties of

simpler spaces.

3 Representation Spaces in Knowledge Graph Embedding
Since a KG usually consists of many complicated structures (e.g., 1-to-N, N-to-N, and hierarchical

relationships), researchers have proposed to embed KGs in different representation spaces in

order to better preserve such complicated structural information [24, 38, 59, 198, 225]. Indeed,

different representation spaces have their unique structures and properties, as we show in Section 2.

However, in addition to the fundamental mathematical spaces introduced in Section 2, there are

more spaces that provide better properties for KGE. For example, in hyperbolic space, the region and

length increase exponentially with the radius, which provides more available space for embedding

task [4, 24, 101, 102, 126, 195]. Moreover, in Lie group, embedding vectors will never diverge

unlimitedly and therefore regularisation of embedding vectors is no longer required for effective

learning [38]. As a result, KGE methods built on different representation spaces are able to capture

and preserve different structural and attribution information in original KGs. However, there is

neither a systematic review of KG embedding methods from the perspective of representation

spaces, nor any literature showing how to properly choose representation space given particular

KGE tasks. In this paper, we aim to fill this gap by summarising KGEmethods based on the structures

and properties of their mathematical representation spaces.

Note that in Section 2, we introduced some algebraic definitions of some basic spaces. Based on

them, some geometric perspectives, such as Euclidean geometry and hyperbolic geometry, can also

be introduced accordingly. At the same time, we notice that there are various kinds of mathematical

spaces in KGE, which play a significant role and belong to different mathematical structures. The

diverse spaces in KGE often have complicated relationships. For example, manifolds and Euclidean

geometry have inclusion relations since there are overlapping structures between them. In addition,

some spaces are not juxtaposed such as spherical space and probability space because they originate

from different mathematical structures, which cannot be discussed in the same category.

As a result, in order to better understand the influence of different mathematical representation

spaces on KGE methods, we build a systematic, comprehensive, multi-angle categorisation to

classify the special spaces and categorise KGE models more accurately based on three mathematical

structures, namely Algebraic Structure, Geometric Structure and Analytical Structure. Most

KGE models fall under these three structures, which proves the rationality of our categorisation, as

shown in Figure 4. It is worth noting that we will add additional definitions in Section 3 for KGE

spaces that are not mentioned in Section 2.

In this section, wewill first describe the definitions and properties of the above threemathematical

structures, after which we will provide some representative KGE methods that learn embedding in

the corresponding mathematical structure, as well as summarise how spatial advantages work in

KGE models.

3.1 Algebraic Structure
An algebraic structure is a nonempty set on which one or more finite operations satisfying the

axiom are defined [56, 192]. Some representative algebraic structures include vector space, group
and ring. For example, the vector space X is an algebraic structure that involves many common

binary operations, such as addition, subtraction and multiplication. From the algebraic point of

view, most models in machine learning and even knowledge graph embedding involve algebraic
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Fig. 4. The systematic categorisation of KGE models based on three mathematical perspectives.
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operations, such as m¥𝑜buis embedding [4, 27, 169], group embedding [38, 115], user and word

embedding [101, 102, 195] etc., which all belong to the methods in the category of algebraic structure.

3.1.1 Vector Space
The Vector Space is the most widely adopted mathematical space in the field of machine learning,

whose definition is provided in Section 2.3.2. Since there are two convenient algebraic operations

defined in vector space: vector addition and scalar multiplication, it is also widely used by many

KGE methods. These methods utilise these operations to project both entities and relations into the

same vector space, with the objective of preserving the relational interactions among entities in

the vector representation space. As discussed in Section 2.3.2, the vector space can be classified

as real vector space and complex vector space based on the scalar field. In accordance with these

classification criteria, we categorise vector space-based KGE methods into three distinct groups:

real vector space-based, complex vector space-based, and other models within the vector space

domain, such as neural network-based and external information-based models. In what follows, we

delve into each of these groups of KGE methods in depth.

Real Vector Space. One representative KGE methods based on real vector space is TransE [14].

Given a knowledge graph, it projects all entities and relations into a low-dimensional real vector

space R𝑘 . Specifically, it directly represents the head entity ℎ, the relation 𝑟 and the tail entity 𝑡 in a

fact triple as embedding vectors h, r, t ∈ R𝑘 , respectively. If the triple (ℎ, 𝑟, 𝑡) holds, the embedding

of the tail entity t should be as much as close to the head entity embedding h translated by the

relation embedding r, which conforms to the principal: h + r ≈ t. It is very simple and effective to

directly express the relations between entities by addition operation. Therefore, the score function

in TransE is defined as:

𝑠 (h, r, t) = −||h + r − t| |1/2 . (6)

However, despite TransE is simple and effective, it performs poorly when dealing with multi-

relation (e.g., 1-to-𝑁 , 𝑁 -to-1, 𝑁 -to-𝑁 ) data [165]. For example, suppose that a relation 𝑟1 is a 1-to-𝑁

relation, then for a head entity ℎ1, it may have relation 𝑟1 with two different tail entities 𝑡1 and

𝑡2. TransE would enforce these two tail entities to have approximately the same embedding, i.e.,

t1 ≈ t2, which is inaccurate since 𝑡1 and 𝑡2 are two different entities. The same analysis also applies

to 𝑁 -to-1 and 𝑁 -to-𝑁 relations. To overcome the problems of TransE in modelling muti-relation

data, TransH [190] projects the head entity ℎ and tail entity 𝑡 into the hyperplane where the

relationship 𝑟 resides. Specifically, TransH assumes that each relation embedding r lies in a different

relation-specific hyperplane w𝑟 . In order to measure the plausibility that a triple (ℎ, 𝑟, 𝑡) holds, the
head entity embedding h and tail entity embedding t are first projected into the relation-specific

hyperplane w𝑟 :

h⊥ = h −w⊤
𝑟 hw𝑟 , t⊥ = t −w⊤

𝑟 tw𝑟 , (7)

where h⊥ and t⊥ represent the projected head and tail entity embeddings, respectively. Therefore,

the score function of a triple (ℎ, 𝑟, 𝑡) is defined as:

𝑠 (h, r, t) = −||h⊥ + r − t⊥ | |22. (8)

By projecting the entity embedding to relation-specific hyperplane, TransH allows entities to

have different embeddings in different relations, which ensures that the embedding of 𝑡 is different

even if the head entity or the relation is the same. From TransH, we can see that projection plays

a key role, and projection is a very common operation in vector space that is used to establish

various connections (See Figure 5a).
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Despite TransH can effectively handle multi-relations in KGs, it still assumes that the relation

embeddings and entity embeddings belong to the same embedding space, which will limit diversity.

However, an entity may have multiple aspects and different relations may focus on different aspects

of entities. To address this problem, TransR [109] proposes to embed entities in an entity space R𝑘

(h, t ∈ R𝑘 ), and embed relations in a different relation space R𝑑 (r ∈ R𝑑 , 𝑘 and 𝑑 are not necessarily

identical). The entity embedding and relation embedding are correlated by the relation-specific

mapping matrix (M𝑟 ∈ M𝑘×𝑑 ), which projects entity embedding from entity space to relation space.

Therefore, the score function in TransR is defined as:

𝑠 (h, r, t) = −||M𝑟h + r −M𝑟 t| |22. (9)

RESCAL [130] models the semantic interactions between entities by using bilinear operations

with score function:

𝑠 (h, r, t) = h⊤M𝑟 t =
(∑︁

𝑖

∑︁
𝑗

[M𝑟 ]𝑖 𝑗 · h𝑖 · t𝑗
)
, (10)

where each relation is defined as a matrix M𝑟 ∈ M𝑑×𝑑 , and [M𝑟 ]𝑖 𝑗 denotes the i-th row and j-th

column of the matrixM𝑟 . Similar linear models such as DisMult [209], HolE [129], ANALOGY [110],

SimplE [82], TuckER [5] and LowFER [2] have proven their great performance on downstream tasks.

As a result, with simple and efficient linear operations, the plausibility of facts can be measured by

matching latent semantics of entities and relations (See Figure 5b).

Recently, there are some KGE models that learn embeddings in the real vector space as well. For

example, ReflectE [222] uses reflection transformation tomap properties and entities byHouseholder

matrix. LineaRE [136] interprets a relation as a linear function of entities to capture connectivity

patterns. TimE [221] projects entities into the nonlinear time domain to obtain better diversity

distribution. It could be found that many mathematical operations of real vector space are worth

exploring and applying to KGE.

Complex Vector Space. Compared with real vector embedding, complex vector embedding (or

complex embedding for brevity) can handle a large variety of binary relations [168], such as symmet-

ric and antisymmetric. Complex embedding methods for KGs, which embed entities and relations

in the Complex Vector Space (i.e., h, r, t ∈ C𝑘 ), have also been widely studied. ComplEx [168] is

the first model to use complex embedding in KGE. Specifically, it defines a score function with the

Hermitian dot product in complex vector space:

𝑠 (h, r, t) = 𝑅𝑒
(
h⊤𝑑𝑖𝑎𝑔(r) t̄

)
= 𝑅𝑒

(∑︁
𝑖

r𝑖 · h𝑖 · t𝑗
)
, (11)

where t̄ is the conjugate (see Table 1) of t, 𝑅𝑒 (·) denotes the operation to obtain the real part of a

complex number. Since the score function is not symmetric anymore, the facts with antisymmetric

relations can receive different scores depending on the ordering of entities. Thus ComplEx can

effectively capture antisymmetric relations while retaining the efficiency benefits of the dot product.

Motivated by the Euler’s rule 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃 , RotatE [158] maps entities and relations into

the complex vector space and defines each relation as a rotation from the source entity to the

target entity with the principal t = h ◦ r (where ◦ denotes the Hadamard product, i.e., element-

wise product). Different entities can be directly modelled through the angular transformation

(See Figure 5c) so as to capture some patterns including symmetry, antisymmetry, inversion, and

composition. Compared with ComplEx, QuatE [225] takes advantage of quaternion representations

to enable richer and more expressive semantic matching between head and tail entities with the

use of Hamilton product (⊗, i.e., quaternion multiplication), where a quaternion 𝑄 is defined as
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Fig. 5. An Illustration of some kind of algebraic operations which can be applied for knowledge graph
embedding from algebraic perspective.

𝑄 = 𝑎+𝑏i+𝑐j+𝑑k and (i, j, k) are imaginary units satisfying Hamilton’s rule: i2 = j2 = k2

= ijk = −1.

BiQUE [59] extends the quaternion system to a more powerful algebraic system called biquaternion

𝑞 = (𝑤𝑟 + 𝑤𝑖I) + (𝑥𝑟 + 𝑥𝑖I) + (𝑦𝑟 + 𝑦𝑖I) + (𝑧𝑟 + 𝑧𝑖I), where 𝑤𝑟 , 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ,𝑤𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ R. Also by

utilising the Hamilton product of biquaternions, BiQUE imbues itself with a strong geometric

interpretation (i.e., the Euclidean/hyperbolic rotation). In addition to the fact that quaternions have

more degree of freedom in the four dimensional space. It is worth mentioning that the interpolation

between two quaternions is extremely easy, which helps to establish rotations (See Figure 5d).

Recently, DualE [20] employs a novel framework which can embrace both translation and rotation

operations in the dual quaternion space(𝑄𝑑𝑢𝑎𝑙 = 𝑎 + 𝜖𝑏, where 𝑎 and 𝑏 are quaternions while 𝜖 is a

dual unit). DualQuatE [48] combines the idea of DualE and QuatE. HA-RotatE [183] and CORE [52]

inherit the structure of RotatE and expand the ability of KGs embedding.

Neural Network Models in Vector Space. Neural networks [33] are employed in KGE models for

learning embedded features. However, the black-box nature of neural networks precludes our

understanding of the specific mathematical features captured by these neural network-based KGE

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.



16 Cao et al.

models. Nevertheless, given that these models yield vector representations, we categorise them in

conventional vector spaces.

ConvE [33] initially reshapes the head entity and relation into a 2D matrix, subsequently utilising

2D convolution in conjunction with multiple layers to represent interactions between entities and

relations. The scoring function is defined as:

𝑠 (h, r, t) = 𝜎
(
vec

(
𝜎
(
[h2𝐷 , r2𝐷 ] ∗ 𝜔

) )
W

)
t, (12)

where 𝜎 denotes activation function, and vec(·) means the vectorisation operation. h2𝐷 and r2𝐷

are 2D reshaping of h and r (i.e., h2𝐷 , r2𝐷 ∈ R𝑘𝑤×𝑘ℎ
, if h, r ∈ R𝑘 with 𝑘 = 𝑘𝑤𝑘ℎ), respectively. 𝜔 is

the convolutional filter. Owing to the potent feature extraction capacity of the nonlinear neural

network layer, ConvE exhibits high expressiveness and delivers exceptional performance.

R-GCN [150] represents relationships between entities and relations by employing Graph Con-

volutional Networks (GCNs [83, 213]), which focus on local graph neighbourhoods to manage

large-scale relational data. To compute the forward-pass update for an entity, the hidden state y of

layer 𝑙 + 1 undergoes a propagation process [213]:

y𝑙+1

𝑖 = 𝜎

( ∑︁
𝑟 ∈R

∑︁
𝑗∈N𝑟

𝑖

1

𝑐𝑖,𝑟
W𝑙
𝑟𝑦
𝑙
𝑗 +W𝑙

0
𝑦𝑙𝑖

)
, (13)

whereN𝑟
𝑖 denotes the set of neighbor indices of node 𝑖 under relation r ∈ R and 𝑐𝑖,𝑟 is a normalisation

constant. CompGCN [170] leverages a variety of composition operators derived from KGE methods

to concurrently embed nodes and relations in a graph. This approach has demonstrated the capability

to generalise various existing multi-relational GCN techniques, including R-GCN [150], Directed-

GCN [118] and Weighted-GCN [151].

KG-BERT [212], a transformer-based [171] model, interprets triples as text sequences and con-

ducts knowledge embedding by leveraging a pre-trained language model BERT [34]. KG-BERT is

capable of utilising abundant linguistic information present in the extensive text and emphasising

the most pertinent words associated with a triple. Recently, Knowformer [92] employs position-

aware relational compositions to encode the semantics of entities appearing in varying positions

within a relational triple and achieves state-of-the-art. It has been proved that these compositions

assist the self-attention mechanism [171] in differentiating entity roles based on their positions.

Incorporate Auxiliary Information in KGE. Learning knowledge graph embeddings using auxiliary

information constitutes a significant subfield within KGE approaches. While this topic may not be

as closely connected to the mathematical representation space, we will provide a concise overview

of some classic external-information-based KGE models to maintain a comprehensive review.

Commonly used auxiliary information in existing work includes text descriptions, entity types,

relational structures or paths, and other information [43, 146, 161, 182]. DKRL [200] investigates

more profound knowledge representation by utilising CNNs to extract the semantics of entity

descriptions in a representation learning manner. TKRL [203] considers hierarchical entity types as

projection matrices and employs the type information as relation-specific type constraints. It has

been demonstrated that TKRL effectively captures hierarchical type information, which is crucial for

constructing representations of knowledge graphs. HRS [235] treats relations in knowledge graphs

as a three-layer hierarchical relation structure, which can be effortlessly integrated into other KGE

models to acquire abundant structural information. RSN [60] and Interstellar [230] tackle the issue

of previous models’ insufficient ability to capture long-term relational dependencies of entities

effectively by employing relational paths. Recently, TransO [98] has been proposed as a method to

seamlessly integrate all available ontology information (i.e., type information, relation constraint

information, and hierarchical structure information.) within the knowledge embedding process,
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thereby enhancing decision-making capabilities in complex situations. In addition, combined with

other external information such as image data [201], conceptual information [58, 62, 72] also holds

significant importance in the realm of knowledge graph embedding.

3.1.2 Group
A group [16, 87, 144] is an algebraic structure composed of a set and an operation, which is

ubiquitous in all fields inside and outside mathematics. For example, symmetry groups describe

the symmetries of geometry [142], and lie groups are used in particle physics [53]. Because of its

unique abstract algebra properties, groups are also widely used in machine learning. In this section,

we will start with the definition of groups and then describe the KGE models that leverage groups

as embedding space.

Definition 3.1. A (binary) operation on a set G is a function:

∗ : G × G→ G.

Definition 3.2. A group is a set G equipped with an operation ∗ and a special element 𝑒 ∈ G,
called the identity, such that:

(a) (Associativity): For every 𝑎, 𝑏, 𝑐 ∈ G, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐);
(b) (Existence of identity): 𝑒 ∗ 𝑎 = 𝑎 for all 𝑎 ∈ G;
(c) (Existence of inverses): for every 𝑎 ∈ G, there is 𝑎′ ∈ G with 𝑎′ ∗ 𝑎 = 𝑒 .

To tackle TransE’s regularisation problem, TorusE [38] proposes to embed KGEs into a special

algebraic structure—Torus. A torus is an Abelian Lie group, which is derived from the vector space

through the nature projection 𝜋 : R𝑛 → 𝑇𝑛, 𝑥 ↦→ [𝑥] (𝑇𝑛 denotes quotient space [38]). With the

help of torus, the model never diverges unlimitedly.

DihEdral [206] is the first attempt to employ finite non-Abelian group in KG embedding to

account for relation compositions. Since the elements in a dihedral group are well constructed by

rotation and reflection operations, and the multiplication between elements can be Abelian or non-

Abelian, DihEdral is capable to capture all desired properties: (skew-)symmetry, inversion and (non-)

Abelian composition. DensE [115] decomposes a relation operator into a SO(3) group-based (SO(3):

Special Orthogonal Group in 3 dimensions) rotation as well as a scaling transformation. NagE [211]

proves for the first time that the group algebraic structure is significant for designing relational

embedding models. Specifically, the definition of group can naturally satisfy the basic properties (e.g.,
inversion, composition) of knowledge graphs, which means the group-based models should have

great potential to deal with KGE tasks. Other recent models based on group structure such as

ModulE [23] consider both entity and relation as group elements so as to achieve state-of-the-art

performance.

3.1.3 Ring
In mathematics, rings [16, 87, 144] are algebraic structures that generalised fields. Commutative

rings are one of the main branches of ring theory. Examples include the set of integers with addition

and multiplication, and the set of polynomials with the same operations. Ring theory was later

proved useful in geometry and analysis [41]. In this section, we will first introduce the definition of

ring, and then discuss the KGE models that use ring as embedding space.

Definition 3.3. A ring is a set S equipped with two binary operations: + (addition) and · (multipli-
cation) which satisfy the following axioms,

(a) S is an Abelian group under addition, meaning that:

• (Associative): (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑅;
• (Commutative): 𝑎 + 𝑏 = 𝑏 + 𝑎 for all 𝑎, 𝑏 ∈ S;
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• (Additive identity): There is an element 0 in S such that 𝑎 + 0 = 𝑎 for all 𝑎 ∈ S;
• (Additive inverse): For each 𝑎 in S there exists −𝑎 such that 𝑎 + (−𝑎) = 0.

(b) S is a monoid under multiplication, meaning that:

• (Associative): (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ S;
• (Multiplicative identity): There is an element 1 in S such that 𝑎 · 1 = 𝑎 and 1 · 𝑎 = 𝑎 for all

𝑎 ∈ S.
(c) Multiplication is distributive with respect to addition, meaning that:

• (Left distributivity): 𝑎 · (𝑏 + 𝑐) = (𝑎 · 𝑏) + (𝑎 · 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ S;
• (Right distributivity): (𝑏 + 𝑐) · 𝑎 = (𝑏 · 𝑎) + (𝑐 · 𝑎) for all 𝑎, 𝑏, 𝑐 ∈ S.

M¥𝑜biusE [27] extends KGE to manifold-based embedding, in which the entities and relations are

embedded to the surface of M¥𝑜bius ring. With the scoring function (dist(h ⊕ r, t), where ⊕ and dist
represent addition and distance function specially defined on M¥𝑜bis ring, respectively), M¥𝑜biusE
has much more expressiveness and flexibility than TorusE [38] due to the extra properties on ring.

As M¥𝑜biusE subsumes TorusE, it naturally inherits all the desired properties of TorusE including

symmetric/antisymmetry, inversion, and composition. It is worth mentioning that the M¥𝑜bius band
is a non-oriented surface and the concept of clockwise and counterclockwise cannot be clearly defined,
which may be helpful for certain tasks that are closely related to orientation.

3.2 Geometric Structure
A geometric structure [54] on a manifold is a complete Riemannian metric which is locally homo-

geneous (i.e., any two points have isometric neighbourhoods). Although there are few detailed

definitions of geometric structures, here we focus more on the knowledge graph embedding mod-

els built on different geometric models/spaces and analyse them in detail from three geometric

perspectives: Euclidean Geometry, Hyperbolic Geometry and Spherical Geometry. We summarise

the operations of these three geometries in Table 3.

3.2.1 Euclidean Geometry
Euclidean geometry is the study of geometrical shapes (plane and solid) and figures based on

different axioms and theorems. It is basically introduced for flat surfaces or plane surfaces. This

part of geometry was employed by the Greek mathematician Euclid, who has also described it in

his book, Elements [44]. Geometry is derived from the Greek words ‘geo’ which means earth and

‘metrein’ which means ‘to measure’.

Euclidean geometry deals with things like points, lines, angles, squares, triangles, and other

shapes. Based on different coordinate systems, in this part, we will divide KGE models built in

Euclidean geometry into four part: Cartesian Coordinate, Polar Coordinate and Spherical Coordinate.
It is worth noting that: Euclidean geometry under geometric structure and vector space under

algebraic structure are very similar and have some common concepts. This is because geometric

features and algebraic features are usually closely related. But in this section we will emphasise the

advantages of KGE models from the geometric perspective.

Cartesian Coordinate. Most of the translation-based models are based on the common Cartesian

coordinates. For example, TransE follows the principle: h + r ≈ t, i.e., the vector of head entity

add the relation vector is equal to the tail vector through a translation. These three vectors are

connected from head to tail, forming a closed path in Cartesian coordinates. RotatE shows that

it’s ingenious to define each relation as a rotation from the source entity to the target entity. For

example, two relations r1 and r2 are inverse if and only if their embeddings are conjugate: r1 = r̄2

(r1 : (𝑐𝑜𝑠 (𝜃1), 𝑠𝑖𝑛(𝜃1)), r2 : (𝑐𝑜𝑠 (𝜃2), 𝑠𝑖𝑛(𝜃2))), which means they are symmetric about the real axis

(i.e., 𝑠𝑖𝑛(𝜃1) = −𝑠𝑖𝑛(𝜃2)). All relation patterns can be clearly illustrated by geometric transformation
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Table 3. Summary of operations in Euclidean, Hyperboloid and Spherical models [113, 125, 191]. It is worth
noting that the category of geometric spaces associated with a model is closely related to the distance
function utilised in its scoring function. Models based on Euclidean geometry typically employ the well-
known Euclidean distances (i.e., | | · | |), where varying transformation relations for h, r, and t give rise to distinct
models. Conversely, hyperbolic and spherical models tend to use hyperbolic distance (𝑑H) and spherical
distance (𝑑S) with unique properties for their respective scoring functions. Notably, some models employing
spherical embedding techniques may not exclusively rely on spherical distances. Instead, they may model
entities as spheres or through other spherical geometric embeddings. Visual representations of these three
geometric embeddings are included in the table.

Euclidean Hyperboloid Spherical

ManifoldM R𝑛 H𝑛
𝐾

=
{
𝑥 ∈ R𝑛+1

: ⟨𝑥, 𝑥 ⟩ = 1

𝐾

}
S𝑛
𝐾

=
{
𝑥 ∈ R𝑛+1

: ⟨𝑥, 𝑥 ⟩ = 1

}
Distance 𝑑 (𝑥, 𝑦)

〈√
𝑥 − 𝑦, 𝑥 − 𝑦

〉
1

|𝐾 | 𝑐𝑜𝑠ℎ
−1 (𝐾 ⟨𝑥, 𝑦⟩) 𝑐𝑜𝑠−1 (⟨𝑥, 𝑦⟩)

Exponential map 𝑒𝑥𝑝𝐾𝑥 (𝑣) x+v 𝑐𝑜𝑠ℎ (
√︁
|𝐾 | ∥𝑣 ∥ )𝑥 + 𝑣 𝑠𝑖𝑛ℎ (

√
|𝐾 |∥𝑣∥)√

|𝐾 |∥𝑣∥
𝑐𝑜𝑠 ( ∥𝑣 ∥ )𝑥 + 𝑠𝑖𝑛 ( ∥𝑣 ∥ ) 𝑣

∥𝑣∥

Curvature ℭ 0 < 0 > 0

Sum of angles 𝔄 𝜋 < 𝜋 > 𝜋

Scoring function

𝑠 (h, r, t)

TransE: −| |h + r − t | | MuRP: −𝑑H (x(r)h , x(r)t )2 + 𝑏h + 𝑏t MainfoldE: −| |𝜑 (h) + 𝜑 (r) − 𝜑 (t) | |2

RotatE: −| |h ◦ r − t | | ATTH: −𝑑H (Q(h, r), tH )2 + 𝑏h + 𝑏t MuRS: −𝑑S (x(r)h , x(r)t )2 + 𝑏h + 𝑏t
PairRE: −| |h ◦ r𝐻 − t ◦ r𝑇 | | HyperKA: −𝑑H (x(0)h ⊕ x(0)r , x(0)t ) SEA: −| |e − q𝑖 | | + 𝑏h + 𝑏e

Illustration

in Cartesian coordinates. Moreover, QuatE [225] extends complex space to quaternion where there

are two planes of rotations. Inspired by RotatE, Tang et al. [162] extend RotatE from 2D complex

domain to high dimensional space with orthogonal transformations, which preserves the ability of

modelling different patterns while achieving better performance. Furthermore, numerous RotatE-

basedmodels [46, 71, 88, 89, 183] exist, which expand upon the foundational principles of the original

RotatE framework. For example, Rotate3D [46] and Rotate4D [89] define rotational relations in

higher dimensional space. However, it remains challenging for KGE models to handle complex

relations. To mitigate this problem, PairRE [25] uses paired vectors for each relation r =
[
r𝐻 , r𝑇

]
,

where the value of r𝐻 and r𝑇 can be changed to fit the complex relations. Through the scoring

function, relation vectors can project entities to arbitrary positions inside a unit circle lying on the

Cartesian coordinates. Further analysis also proves that PairRE can capture subrelation in addition

to those that RotatE can model [158].

Other Cartesian coordinate-based KGEmodels have also emerged recently. For example, TripleRE

[219] inherits PairRE’s projection part and builds the translation part by its own way. InterHT [176]

merges the information from tail entity to head entity representation. TranS [229] is proposed

to efficiently capture single relations and HousE [95] utilise Householder parameterisation [70]

to capture crucial relation patterns. CompoundE [50] successfully embeds KGs by leveraging

three fundamental Euclidean geometric operations. CompoundE3D [51] updates the compound

transformation to further match the rich underlying characteristics of a KG. ConE [117] combines an

explicit relation and a latent relation as collaborative relation for solving circular relation problems.

The above geometric models based on Cartesian coordinates are illustrated in Figure 6. In summary,
the prevalent geometric transformations employed in KGE include translation, rotation, reflection, and
scaling. These transformations have been proven effective in capturing essential relational patterns
and mapping characteristics.
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Fig. 6. KGE models in Cartesian Coordinate. “↔“ illustrates the distance (scoring) function.

Polar Coordinate. In order to naturally reflect the hierarchy of KGs, HAKE [231] models en-

tities and relations in the polar coordinate system. The radial coordinate aims to model enti-

ties (h𝑚, t𝑚, r𝑚 ∈ R𝑘 ) at different levels, and the angular coordinate aims to distinguish entities

(h𝑝 , t𝑝 , r𝑝 ∈ [0, 2𝜋) ) at the same level of hierarchy. Combining the modules and phase information,

HAKE significantly outperforms the SOTA hierarchy-based models while also completely capturing

relational patterns. Although H
2
E [185]’s representation space belongs to hyperbolic geometric, it

also uses modulus and phase information to embed entities— which is named Hyperbolic Polar

Embedding. Modulus embedding models the inter-level hierarchy and Phase Embedding models

the intra-level hierarchy. Recently, HBE [132] is also a hyperbolic geometry-based KGE model

but with polar coordinate system by Mobius multiplication and Mobius addition in an extended

Poincare ball.

Spherical Coordinate. STKE [184] represents entities and relations in a spherical coordinate

system, but for temporal knowledge graphs. Each entity contains the radial part 𝑟 , the azimuth

part 𝜃 and the polar part 𝜑 . With the help of spherical coordinates, STKE treats temporal changes

as scaling and rotation of entity embeddings, which can dynamically distinguish different time-

constrained entities.

3.2.2 Hyperbolic Geometry
MuRP [4] is proposed to embed hierarchical multi-relational data in the Pointcar𝑒 ball of hyperbolic

space, where the Pointcar𝑒 ball is defined as a 𝑑-dimensional manifold with the form: B𝑑𝑐 ={
𝑥 ∈ R𝑑 : 𝑐 ∥𝑥 ∥2 < 1, 𝑐 > 0

}
. Compared with Euclidean space, hyperbolic surface can be seen to have

more spaces to represent entities and capture hierarchy information with increasing radius [147], so
that MuRP outperforms Euclidean KGE models and achieves better performance, especially in
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hierarchical datasets. Instead of learning in a hyperbolic space with fixed curvature as in MuRP,

ATTH [24] leverages expressive hyperbolic isometries to simultaneously capture logical patterns

and hierarchies. For each relation (e.g., rotation, reflection), it learns a specific absolute curvature

𝑐𝑟 to avoid precision errors. Based on ATTH, models in different conditions are also proposed

(i.e., ATTE, ROTE/H, REFE/H). As also mentioned in section about polar coordinate, HBE [132]

employs an extended Pointcar𝑒 ball to capture hierarchical structures using polar coordinate system

(Pointcar𝑒 disk) to solve the boundary constraints which might happen in conventional Pointcar𝑒

ball. Sun et al. [157] also represent KG embedding in a hyperbolic space by HyperKA, but firstly

incorporate hyperbolic translation embedding with graph neural network (GNN). However, with

the constant emergence of hyperbolic models, Kai Wang et al. [179] could not help asking: Is
Hyperbolic Geometry necessary? Considering that hyperbolic-based model consistently necessitates

greater computational complexity, which subsequently leads to the requirement for increased

training resources, it raises the question of whether the benefits outweigh the associated costs?

To tackle this issue, RotL and Rot2L are proposed to simplify the hyperbolic operation in RotH.

By defining Flexible Addition, RotL can reduce the computation complexity of RotH [24] and save

over 50% training time. However, it should not be ignored that knowledge graphs have multiple

mixed relations, and excessive focus on hierarchical information often neglects capturing other

information. Hyperbolic hierarchical transformations are introduced in HypHKGE [237] to extract

hierarchies. MuRMP [186] utilises the mix-curvature model combined with GNN to better capture

intrinsic heterogeneous structure in the KGs. UltraE [204] considers an ultrahyperbolic manifold

to overcome the non-hierarchical embedding problems. Several contemporary KGE models (e.g.,

SEPA [55] and FFTAttH [199]) grounded in hyperbolic spaces have also demonstrated commendable

performance.

3.2.3 Spherical Geometry
Before introducing the spherical geometry models, in order to avoid the confusion of the concepts

of spherical coordinate system and spherical geometry, we first make a specific distinction between

them. The spherical coordinate system mentioned above can be consider as a tool to describe

points’ positions naturally. And the basic concepts behind it are points and straight lines based

on the Euclidean geometry. However, in spherical geometry [63], the basic concepts are point

and great circles where any two lines meet in two points, and there are also no parallel lines.

Spheres are compatible with ring structures as the circular pattern of the vector field generated by
spherical embedding has a natural circularity [160]. Consequently, spherical-based models also can
yield competitive outcomes on complex relational datasets.

TransC [116], in order to differentiate instances and concepts, encodes each concept in knowledge

graph as a sphere (e.g. concept 𝑐𝑖 is encoded as a sphere 𝑠𝑖 (p𝑖 ,𝑚𝑖 ), where p𝑖 denotes the centre,
𝑚𝑖 denotes the radii) and each instance as a vector in the same semantic space. For example,

for distinguishing the relations between concepts and sub-concepts (i.e. subClassOf ), TransC
construct several possible positions (e.g. inclusion, intersection, separation) between two concept

spheres for different conditions. Comparing with TransC, HypersphereE [37] extends the sphere

into hypersphere so as to not neglect the uncertainty of instances. Another special model named

ManifoldE [198], which expands point-wised embedding to manifold-based embedding. Instead

of adopting previous translational-based principle h + r = t, ManifoldE employs manifold-based

principle M(h,r,t) = 𝐷2

𝑟 (M is the manifold function) in sphere and hyperplane respectively. In

Sphere condition, entity which is always considered as a point in classic models is now extended

to a whole high dimensional sphere. Through this mean, ManifoldE avoids much noise so as

to best distinguish true facts. The smoothness of the sphere surface makes the embedding very

flexible, and there can be countless mappings from the centre of the circle to the surface. As
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we know that KGs usually contain rich types of structure such as hierarchical and cyclic typed

structures. Embedding KGs in single curvature space, such as Euclidean or hyperbolic space,

overlooks the intrinsic heterogeneous structures of KGs, and therefore cannot accurately capture

their structures. Hence, M
2
GNN, as a mixed-curvature model, is designed to address this issue. The

scoring function is defined as 𝜙
P
𝑑𝑜 ,𝑑ℎ,𝑑𝑠

𝐾𝑜 ,𝐾ℎ,𝐾𝑠
(𝑒ℎ,𝑟 ,𝑒𝑡 )

, where P denotes the mixed-curvature space, 𝑑𝑜 , 𝑑ℎ, 𝑑𝑠

are the dimensions of the component spaces of Euclidean, hyperbolic, and spherical, 𝐾𝑜/ℎ/𝑠 are the
corresponding curvature of spaces. Recently, SEA [55] utilises spherical geometry to consolidate

various extant representations of KGE queries, thereby capturing diverse logical and structural

patterns. Intriguingly, SEPA [55], an alternative version of the SEA, can also be projected onto the

Pointcar𝑒 ball to encompass more intricate structural representation.

3.3 Analytical Structure
An analytical structure is usually thought of as a structure of having a measure. For instance, metric

(or distance) is well defined in Euclidean space so that we can integrate, differentiate and other

analytical operations. Similarly, in the probability space, the probabilistic measure is defined, so it

can consider as an analytical structure. In this section, we will deeply dig into the KGE models by

dividing them into two main spaces: Probability Space and Euclidean Space.

3.3.1 Probability Space
To the best of our knowledge, KG2E [65] is the first density-based KGE model which represents each

entity/relation by a multi-dimensional Gaussian distribution N(𝝁, 𝚺) in probability space, where

the mean vector 𝝁 indicates its position and the covariance metric 𝚺 indicates the corresponding

(un)certainty which impacts on others. In addition, two similar methods based on KL-divergence

and expected likelihood, are proposed to inspect the difference of asymmetric and symmetric

respectively. Previous models have formally considered the issue of multiple relation semantics

in KGs. However, the traditional translational-based models always assign only one vector for

one vector, ignoring the fact that a relation may have multiple meanings. Thus, TransG [197]

is proposed by leveraging a Bayesian non-parametric infinite mixture model to handle multiple

relation semantics by generating multiple translation components for a relation. In TransG, entities

are generated by a certain Gaussian distribution, where the𝑚−th component translation vector

of relation 𝑟 is represented as: 𝝁𝑟,𝑚 = t − h ∼ N(𝝁𝑡 − 𝝁ℎ, (𝜎2

ℎ
+ 𝜎2

𝑡 )𝐸). Through this process,

TransG would automatically select the best match between h, t and r. Other probabilistic-based

models such as DBKGE [106] and GaussianPath [175] also harness the uncertainty of KGs by

Gaussian representation. DiriE [177] is proposed by embedding entities as Dirichlet distributions

and relations as multinomial distributions. This method uses Bayesian inference to assess the

relationships between entities and subsequently learns binary embeddings of knowledge graphs for

modelling intricate relation patterns and uncertainty. Recently, It𝑜E [124] formulates the relations

in a KG as stochastic It𝑜 processes, enabling transitions between two nodes to occur with an

associated likelihood. This approach permits It𝑜E to represent multiple stochastic trajectories

including loops connected to paths and is mathematically substantiated as a generalisation of

several state-of-the-art models. The aforementioned methodologies demonstrate that probabilistic
embedding is not only capable of acquiring unstructured patterns but also adept at capturing additional
uncertain information [208].

3.3.2 Euclidean Space
In order to improve the structure preservation capabilities of KGE models, Nayyeri et al. [125]

propose a novel KGE model named FieldE which employs ordinary differential equations (ODEs) for

embedding KGs into a Euclidean space. Each entity is represented by a vector in R𝑛 denoted by e(𝑡)
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and each relation is represented as a vector field 𝑓𝜃𝑟 on a Riemannian Manifold, where e(𝑡) lies on a

trajectory (continuous) on the manifold M solving the ODE:
𝑑e(𝑡 )
𝑑𝑡

= 𝑓𝜃𝑟 (e(𝑡)). Hence, FieldE could

capture the continuity of changes in the embedding space and describe the underlying geometry by

nature. ODE method can also be used in temporal KGs, in which TANGO [61] is proposed to learn

continuous-time representations of entities and relations dynamically by Neural ODE method [26].

These analytical methods facilitate the acquisition of dynamic and continuous representations of
entities and relations, which in turn enhance memory efficiency, adaptive computation, and parameter
effectiveness in various subsequent tasks [84]. In addition to continuous analysis, other analytical

perspectives such as derivability, differentiability, and integrability are also worth exploring in

KGEs.

4 Downstream Tasks of Knowledge Graph Embedding
After introducing a systematic review of existing KGE models from the perspective of mathematical

structure, this section focuses on KGE-based downstream tasks. We highlight some important

and popular applications which are usually employed to evaluate the performance of embedding

models. After summarising and comparing the performance of some KGE models, we examine

their strengths and weaknesses from diverse spatial perspectives and offer some advice for building

KGE models. The summary of the advantages and disadvantages of different KGE models from the

spatial perspective is provided in Table 9.

In what follows, we first describe the process of Link prediction, a fundamental task in KGE

domain, and focus on one popular task: Hierarchy Acquisition in the link prediction scenario.

In addition, we analyse and discuss the task of Pattern Inference. Additionally, we present the
model’s results regarding the time/space complexity and discuss the applications of the KGE models

in other downstream tasks. We also provide some suggestions for building KGE models based on

the empirical results in Section 4.6.

4.1 Link Prediction
Link prediction aims to predict the existence of edges (triples) in knowledge graphs, which is a

fundamental task since many existing KGs have missing facts or incorrect edges [128]. In particular,

the task of link prediction is often formulated as predicting missing entity in an incomplete fact

triple, i.e., predicting head entity ℎ in (?, 𝑟 , 𝑡), or tail entity 𝑡 in (ℎ, 𝑟, ?), where (?, 𝑟 , 𝑡) and (ℎ, 𝑟, ?)
denote fact triples with missing entities. For example, given a triple <?, subclass, COVID-19>, the
goal is to predict the superclass of COVID-19. Therefore, link prediction is also referred to as

knowledge graph completion [128], entity prediction [108] or entity ranking [12].

Given learned entity and relation embeddings with KGE methods, link prediction is carried out

through a ranking procedure. Specifically, in order to predict the tail entity of an incomplete fact

triple (ℎ, 𝑟, ?), we take each entity 𝑡 ′ in the KG as a candidate answer and calculate the plausibility of

the triple (ℎ, 𝑟, 𝑡 ′), which is achieved by calculating the score function of the employed KGE method.

For example, for KGE methods that learn KG embeddings in Euclidean space, the translation-based

score function 𝑠 (h, r, t) = −||h + r − t| |1/2 is often used to assign scores for triples. In contrast,

for KGE methods that learn embeddings in complex space, the rotation-based score function

𝑠 (h, r, t) = −||h ◦ r − t| |2 is often utilised. After obtaining the scores of candidate answers, we can

rank those candidate entities in the descending order of their scores, and select the highest ranked

entity as the prediction result. A similar procedure can also be used to predict the missing head

entity ℎ in (?, 𝑟 , 𝑡). For evaluation, a common practice is to record the ranks of correct answers in

the previous ranked list and leverage those ranks to calculate the evaluation metrics.
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Table 4. The link prediction results on the WN18RR and FB15k-237 datasets, which are classified by its
geometric space. The best scores of 32-dimensional models are in bold, the second best scores are underlined
and the best average scores are coloured. TransE, ComplEx, QuatE, RotatE, MuRE, MuRMP, and 5★E results
are taken from [204]. TuckER, RefE, RotE, AttE, MuRP, RefH, RotH, AttH, and Rot2L results are derived
from [179]. MuRMP is a mix-curvature model. UltraE is an ultrahyperbolic-based model, in which its best
results (when 𝑞 = 6) are chosen. Other results are taken from their original paper. ∗ denotes: DFieldES and
MuRS results are not obtained in the case of low dimensions (d = 32), but in high dimensions. Hence the
average score of the spherical-based model is not comparable. ▽ denotes: GIE is a geometric interactive model
and its result is also in high dimensional conditions, which is not added to the average calculation.

Type Method Year FB15K-237 WN18RR
MRR Hits@10 Hits@1 MRR Hits@10 Hits@1

Euclidean-based

Models

TransE [14] 2013 0.295 0.466 0.210 0.366 0.515 0.274

ComplEx [168] 2016 0.287 0.456 0.203 0.421 0.476 0.391

QuatE [225] 2019 0.293 0.460 0.212 0.421 0.467 0.396

RotatE [158] 2019 0.290 0.458 0.208 0.387 0.491 0.330

TuckER [5] 2019 0.306 0.475 0.223 0.428 0.474 0.401

MuRE [4] 2019 0.313 0.489 0.226 0.458 0.525 0.421

HAKE [231] 2020 0.296 0.463 0.212 0.416 0.467 0.389

RefE [24] 2020 0.302 0.474 0.216 0.455 0.521 0.419

RotE [24] 2020 0.307 0.482 0.220 0.463 0.529 0.426

AttE [24] 2020 0.311 0.488 0.223 0.456 0.526 0.419

Rot2L [179] 2021 0.326 0.503 0.237 0.475 0.554 0.434

EucHKGE [237] 2021 0.319 0.499 0.228 0.462 0.534 0.425

It𝑜ER [124] 2023 0.330 0.508 0.242 0.455 0.548 0.404

Avg_score - 0.306 0.479 0.220 0.436 0.510 0.395

Hyperbolic-based

Models

MuRP [4] 2019 0.323 0.501 0.235 0.465 0.544 0.420

RefH [24] 2020 0.312 0.489 0.224 0.447 0.518 0.408

RotH [24] 2020 0.314 0.497 0.223 0.472 0.553 0.428

AttH [24] 2020 0.324 0.501 0.236 0.466 0.551 0.419

HypHKGE [237] 2021 0.330 0.510 0.240 0.475 0.556 0.432

DFieldEP [125] 2021 0.330 0.510 0.250 0.480 0.570 0.440

FFTAttH [199] 2022 0.331 0.517 0.239 0.476 0.558 0.432

It𝑜EP [124] 2023 - - - 0.474 0.574 0.426

SEPA [55] 2023 0.332 0.509 0.243 0.481 0.562 0.441
Avg_score - 0.325 0.504 0.236 0.471 0.554 0.427

Spherical-based

Models

DFieldES [125] 2021 0.360 0.550 0.270 - - -

MuRS [186] 2021 0.338 0.525 0.249 0.454 0.550 0.432

It𝑜ES [124] 2023 0.334 0.511 0.245 - - -

Avg_score∗ - 0.344 0.529 0.255 0.454 0.550 0.432

Mixed Models

MuRMP [186] 2021 0.319 0.502 0.232 0.470 0.547 0.426

UltraE [204] 2022 0.338 0.514 0.247 0.483 0.555 0.425

GIE
▽
[21] 2022 0.362 0.552 0.271 0.491 0.575 0.452

Avg_score - 0.329 0.508 0.240 0.477 0.551 0.426

4.2 Hierarchy Acquisition
Nowadays, more and more KGE models not only aim to obtain SOTA in link prediction task, but

also pay special attention to whether they can capture hierarchy properties. One main reason why

these works focus on capturing hierarchy structures is that:Multi-relational knowledge graphs
often exhibit multiple simultaneous hierarchies [33, 165]. However, conventional models
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(e.g., TransE, RotatE ) merely emphasis on capturing these hierarchies. Therefore, we focus on

KGE models from the view of mathematical space, aiming to find the most appropriate space to

capture multi-layered information. In this part, we first introduce what hierarchy exactly is, and

then draw our conclusion by comparing the performance of KGE models in different spaces on

hierarchy-contained datasets.

What is Hierarchy? Semantic hierarchy is a ubiquitous property in knowledge graphs. Some

relations can induce various hierarchical structure. For instance, chair is at a higher lever than
armchair, fighting_chair under the relation hypernym, and armchair, fighting_chair are parent nodes
to their part: backrest, leg with the relation has_part. Such hierarchies can be treated as "tree-like"

structures intuitively.

Results. We summarise the performance of KGEmodels in link prediction task on two hierarchical

datasets:WN18RR [33] and FB15K-237 [165], where the curvaturemetric 𝜉𝐺 (The lower themetric 𝜉G
is, themore hierarchical the knowledge graph is [57].) of two datasets are -2.54 and -0.65, respectively.

We summarise two key findings: (1). Non-Euclidean (e.g., hyperbolic-based, spherical-based)
models typically demonstrate a better capacity to capture various KG structures in low
dimensions, as opposed to their Euclidean counterparts. (2). Within high-dimensional
conditions, both non-Euclidean and Euclidean models exhibit comparable performance
in representing KGs.
To ensure a fair comparison, we substantiate our conclusions through multiple aspects. Firstly,

we summarise the link prediction results of some state-of-the-art KGE models on the WN18RR and

FB15k-237 datasets in Table 4. By analysing the empirical results of these models in Table 4, we can

preliminarily infer that, by measured by the average scores metric (i.e., the Avg_score), Euclidean
spatial models generally exhibit inferior performance compared to non-Euclidean spatial models

in low-dimensional embeddings. In particular, hyperbolic-based models significantly outperform

Euclidean baselines on WN18RR and FB15K-237 (highlighted in orange). Subsequently, Table 5

enumerates models based on distinct spaces from the same article to corroborate the conclusion. For

instance, the performance of RefH/RotH/AttH is evidently superior to their Euclidean counterparts,

RefE/RotE/AttE, across multiple evaluation metrics. Concurrently, Tables 5 and 6 present KGE

models over the same time period, effectively eliminating the influence of temporal factors on the

analysis. Therefore, (1). In low dimensions, hyperbolic embeddings present superior performances

compared to Euclidean-based embeddings. Concurrently, spherical embedding also yields favourable

results (See Table 4, 5 and 6). This phenomenon can be mathematically elucidated that: spheres

are congruent with ring structures (as depicted in Figure 1b) due to the circular nature of the

vector field produced by spherical embedding exhibits circularity, facilitating the capture of cyclic

structures [160]. In contrast, vector fields in hyperbolic spaces consistently operate from the

narrower regions of the manifold and progress towards its broader sides [125]. The curvature of

hyperbolic spaces in low-dimensional settings exhibits a direct correlation with the calculated graph

curvature [24], making it suitable for tree-like or hierarchical configurations [45, 126, 127, 163]. (2).
However, when the embedding dimension is large, Euclidean, hyperbolic and spherical embedding

methods perform similarly across all datasets (See Table 5 and 6). We explain this behaviour by

noting that, given sufficiently large dimensions, both Euclidean and non-Euclidean spaces possess

ample capacity to represent intricate hierarchies present in KGs. Consequently, the disparity among

manifold selections in high-dimensional settings appears to be minimal.

Therefore, hyperbolic space provides effectivemethods for studying low-dimensional embeddings

while maintaining underlying hierarchical structures, allowing hyperbolic-based models to embed

tree-like structures with minimal distortion in merely two dimensions [24]. And the spherical

space demonstrates the capacity to encapsulate ring structures, owing to its inherent property of
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Table 5. The link prediction results in different mathematical spaces from the same paper for low-dimensional
(𝑑 = 32) and high-dimensional (best for 𝑑 ∈ {200, 400, 500}) embeddings. Models from the same article in
different spaces are identified by identical symbols, whereas models originating from separate articles are
distinguished by different symbols. [♣]: MuRE/P are from [4]; [♠]: Results are from [4], where ♠𝑖 denotes
models using different geometric transformation; [♦]: Euc/HypHKGE are from [237]; [♥]: It𝑜ER/P/S are
from [237]; [†]: MuRS/MP are from [186]; The best scores are in bold, the second best scores are underlined.

Space Method WN18RR FB15K-237
low-dimension high-dimension low-dimension high-dimension

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

E

MuRE ♣ (2019) 0.458 0.421 0.525 0.475 0.436 0.554 0.313 0.226 0.489 0.336 0.245 0.521

RefE ♠1 (2020) 0.455 0.419 0.521 0.473 0.430 0.561 0.302 0.216 0.474 0.351 0.256 0.541

RotE ♠2 (2020) 0.463 0.426 0.529 0.494 0.446 0.585 0.307 0.220 0.482 0.346 0.251 0.538

AttE ♠3 (2020) 0.456 0.419 0.526 0.490 0.443 0.581 0.311 0.223 0.488 0.351 0.255 0.543

EucHKGE ♦ (2021) 0.462 0.425 0.474 0.493 0.447 0.583 0.319 0.228 0.499 0.354 0.261 0.545

It𝑜ER ♥ (2023) 0.455 0.404 0.548 - - - 0.330 0.242 0.508 - - -

H

MuRP ♣ (2019) 0.465 0.420 0.544 0.481 0.440 0.566 0.323 0.235 0.501 0.335 0.243 0.518

RefH ♠1 (2020) 0.447 0.408 0.518 0.461 0.404 0.568 0.312 0.224 0.489 0.346 0.252 0.536

RotH ♠2 (2020) 0.472 0.428 0.553 0.496 0.449 0.586 0.314 0.223 0.497 0.344 0.246 0.535

AttH ♠3 (2020) 0.466 0.419 0.551 0.486 0.443 0.573 0.324 0.236 0.501 0.348 0.252 0.540

HypHKGE ♦ (2021) 0.475 0.432 0.556 0.494 0.448 0.584 0.330 0.240 0.510 0.351 0.258 0.541

It𝑜EP ♥ (2023) 0.474 0.426 0.574 - - - - - - - - -

S
MuRS † (2021) - - - 0.454 0.432 0.550 - - - 0.338 0.249 0.525

It𝑜ES ♥ (2023) - - - - - - 0.334 0.245 0.511 - - -

M MuRMP † (2021) 0.470 0.426 0.547 0.481 0.441 0.569 0.319 0.232 0.502 0.358 0.273 0.561

Table 6. The scores or average scores of KGE models in Euclidean space (E) and Hyperbolic space (H)
during the same period. [2019] are the scores of MuRE (E) and MuRP (P); [2020] are the average scores of
Ref/Rot/AttE (E) and Ref/Rot/AttH (H); [2021] are the scores of EucHKGE (E) and HypHKGE (H).

Year Space
WN18RR FB15K-237

low-dimension high-dimension low-dimension high-dimension
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

2019

E 0.458 0.421 0.525 0.475 0.436 0.554 0.313 0.226 0.489 0.336 0.245 0.521
H 0.465 0.420 0.544 0.481 0.440 0.566 0.323 0.235 0.501 0.335 0.243 0.518

2020

E 0.458 0.421 0.527 0.485 0.444 0.575 0.304 0.219 0.481 0.348 0.254 0.540
H 0.461 0.418 0.540 0.481 0.432 0.575 0.322 0.227 0.495 0.346 0.250 0.537

2021

E 0.462 0.425 0.474 0.493 0.447 0.583 0.319 0.228 0.499 0.354 0.261 0.545
H 0.475 0.432 0.556 0.494 0.448 0.584 0.330 0.240 0.510 0.351 0.258 0.541

extracting circularity. Nevertheless, this does not mean that non-Euclidean models are necessarily

superior to other spaces since some Euclidean-based models can also achieve high performance

through ingenious tricks, such as ReflectE [222], CompoundE [50]. In addition, the results of the

mixed models (coloured in purple) which learn embeddings in multiple spaces are more outstanding,

which means that better performance can be achieved by using multiple geometries simultaneously

with a suitable hybrid method.

4.3 Patterns inference
Another popular task is about exploring the pattern inference capability since large-scale KGs

always exhibit various types of relationships. As described in [13], a excellent model should be

able to learn all combinations of these properties: (a) symmetry (e.g., marriage, is_similar_to). (b)

antisymmetry (e.g., father_of). (c) inversion (e.g., hypernym and hyponym). (d) composition
(e.g., my mother’s father is my grandpa.). However, looking back at the development of previous

KGE models, it was a difficult process to build a model that could capture all of the above attributes

simultaneously. In this section, we will mainly analyse the advantages of models focusing on

inferring relational patterns, and summarise the key factors of capturing those properties.
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First, we give these four important patterns’ formal definitions as belows [158]:

Definition 4.1. A relation r is symmetric if ∀𝑥,𝑦
r(𝑥,𝑦) ⇒ r(𝑦, 𝑥).

A clause with such form is a symmetry pattern.

Definition 4.2. A relation r is antisymmetric if ∀𝑥,𝑦
r(𝑥,𝑦) ⇒ ¬r(𝑦, 𝑥).

A clause with such form is a antisymmetry pattern.

Definition 4.3. Relation r1 is inverse to relation r2 if ∀𝑥,𝑦
r2 (𝑥,𝑦) ⇒ r1 (𝑦, 𝑥).

A clause with such form is a inversion pattern.

Definition 4.4. Relation r1 is composed of relation r2 and relation r3 if ∀𝑥,𝑦, 𝑧
r2 (𝑥,𝑦) ∧ r3 (𝑦, 𝑧) ⇒ r1 (𝑥, 𝑧).

A clause with such form is a composition pattern.

Next, we analyse specific operations in different spaces to explain how existing models can infer

and model those patterns. Table. 7 shows the patterns inference capabilities of some main KGE

works, and their corresponding spaces and operators.

Addition. The KGE models with addition operation as their core are often found among distance-

based models such as SE [15], TransE [14] and TransE’s variants. The characteristic of addition

is that it is easy to establish the connection between vectors, and the complexity is very low. In

SE [15], the scoring function is too sketchy to capture any of these patterns; By defining ℎ + 𝑟 ≈ 𝑡 ,
TransE [14] makes good use of vector addition to establish the relationship between relations and

entities, and can capture three patterns except symmetry. Since then, a large number of translation-

based models(e.g., TransH [190], TransR [109], etc.) still retain addition operation but carry out

special operation 𝑓𝑟 (·) (mostly matrix multiplication based on r). What remains unchanged is that

the core of operation is still Addition, that is, to a large extent, addition corresponds to the concept

of “translation”. However, with the added projection parameters, these models are unable to encode

inverse and composition. Although they have made progress in dealing with complex relations, the

Trans’s variants are a step back in terms of modelling patterns — a drawback of the simplicity of

addition.

Product. The term “product” refers to the results of one or more multiplications. Most existing

SOTA models use product operation, such as ComplEx [168] and RotatE [158]. Products in different

spaces have different properties to help the KGE models infer more patterns. Here we mainly divide

the product operations into the following groups and analyse them in detail.

• Dot Product. The dot product may be defined algebraically or geometrically. With algebraic

definition, inner product is a way to multiply vectors together, with the result of this mul-

tiplication being a scalar. With geometric definition, the notions of length and angles can

be defined by means of the dot product. In KGE, the fundamental purpose of product is to

expect to establish complex relations between relations and entities through multiplication

rather than simple addition. For example, the scoring function in DistMult [209] is defined as

𝑓𝑟 (ℎ, 𝑡) = h⊤𝑑𝑖𝑎𝑔(r)t = ∑
𝑖 [r]𝑖 · [h]𝑖 · [t]𝑖 , we can see that each score in the summation is
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a direct multiplication of h𝑖r𝑖t𝑖 ; similar in ComplEx [168], the scoring function is extended

to complex space. Note that they are both RESCAL [130]’s extensions, and RESCAL was

originally built for implicit semantic matching by factorisation, which is one of the latent

advantages of dot products.

• Hadamard Product. Hadamard Product (also known as element-wise product) is a binary

operation by which the elements corresponding to the same row and columns of given

vectors/matrices are multiplied together to form a new vector/matrix. The difference between

the dot product and the Hadamard product operationally is the aggregation by summation.

The dot product of two vectors gives only a scalar number while the Hadamard product

of two vectors gives a complete vector, which preserves a large amount of transformed

information of KGs. As in RotatE [158], through the principle t = h ◦ r, r becomes a element-

wise rotation from the head entity to the tail entity; In HAKE [231], each r𝑖 is regarded as a

scaling transformation between two moduli; Cross interaction operations are also applied

by utilising Hadamard product in CrossE [227]. Similarly uses of Hadamard product also

appear in ComplEx [168], PairRE [25], etc. In general, the Hadamard product is closely related

to the concept of “rotation”. Besides, the Hadamard product appears in lossy compression

algorithms such as JPEG, can also be used for describing NN as LSTM [66], GRU [29] or

enhancing, suppressing or masking image regions.

• Other Products. Other subsequent product operations are mostly extended based on the

existing advantages of Dot/Hadamard product. Zhang et al. [225] believed that latent inter-

dependencies between all components are aptly capturedwith Hamilton product, encouraging

amore compact interaction between entities and relations;What’s more advanced than RotatE

is that DualE [20] adopts quaternion inner product operation to model both translation and

rotation, which improves the capability of inferring three important patterns.

Other Operations. Other operations are mostly those with exclusive rules under some special

conditions, but show strengths in some specific tasks (e.g., multi-relation tasks). For example, simple

matching in SME [12]/RESCAL [130], although it only uses simple linear/bilinear matching, it opens

a new field for semantic matching KGE model; Circular correlation in HolE [129], which makes

compressions of pairwise tensor product to enhance its efficiency; Orthogonal Transform [129]

that aims to Unleash the original potential of RotatE into higher dimensions; Mobius addition and

attention in ATTH [24] are utilised to represent relations as parameterised geometric operations

that directly map to logical properties.

4.4 Knowledge Infusion To Enhance Other Domain Applications
Apart from the aforementioned applications that are appropriate for KG embeddings, there are

other wider fields where KG representation learning could be infused to enhance. Knowledge graph

based questions answering (KGQA) is a fundamental, but still challenging task. It recognises the

user’s question input in order to obtain the accurate answers composed of KG entities. Existing

methods include semantic parsing models [86, 100, 216], reinforcement learning [139, 205], and

so on. Knowledge reasoning is a process of using known knowledge to infer new knowledge.

Researchers always use machine learning methods [188, 189, 232] to infer potential relations

between entity pairs and identify erroneous knowledge based on existing data automatically.

There are lots of other external applications based on knowledge graph embedding are still worth

exploring, such as Recommendation System [9, 178, 236], Information Retrieval [40, 111, 141] and

other specific domain (e.g. Cyber Security [69, 99], Biomedicine [22, 172], etc.). The recent surge

of LLMs [17, 19, 30, 31, 149, 166]) has demonstrated exceptional proficiency in handling diverse

Natural Language Processing (NLP) tasks, including question answering, machine translation, and
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Table 7. The pattern inference abilities of several models by using different operators in certain spaces.
SE, TransE, TransR, DisMult, ComplEx, and RotatE results are taken from [158]. Other results come from
origin papers. R represents the Euclidean space. R𝑝 represents the Euclidean space with polar coordinate
system [231]. C represents the complex vector space. G represents the group. H represents the hyperbolic
space. UH represents the ultra-hyperbolic space. Q represents the quaternion vector space. BQ and DQ
represents the biquaternion vector space and dual quaternion vector space, respectively, both of them are
special cases of Q.

Method Manifold Operator Relation Patterns
𝑆𝑦𝑚 𝐴𝑠𝑦𝑚 𝐼𝑛𝑣 𝐶𝑜𝑚𝑝

SE [15] R Addition(+) ✗ ✗ ✗ ✗

TransE [14] R Addition(+) ✗ ✓ ✓ ✓

TransR [109] R Addition(+) ✓ ✓ ✗ ✗

DistMult [209] R Inner Product(⟨·⟩) ✓ ✗ ✗ ✗

HolE [129] R Circular Coorelation(★) ✓ ✓ ✓ ✗

HAKE [231] R𝑝 Hadamard Product(◦) ✓ ✓ ✓ ✓

PairRE [25] R Hadamard Product(◦) ✓ ✓ ✓ ✓

ComplEx [168] C Hadamard Product(◦) ✓ ✓ ✓ ✗

RotatE [158] C Hadamard Product(◦) ✓ ✓ ✓ ✓

ExpressivE [133] R Hadamard Product(◦) ✓ ✓ ✓ ✓

OTE [162] R Orthogonal Transform(𝜙) ✓ ✓ ✓ ✓

QuatE [225] Q Hamilton Product(⊗) ✓ ✓ ✓ ✗

BiQUE [59] BQ Hamilton Product(⊗) ✓ ✓ ✓ ✓

DualE [20] DQ Dual Quaternion Product(⟨⊗⟩) ✓ ✓ ✓ ✓

Rotate3D [46] R Rotational Product(⊙) ✓ ✓ ✓ ✓

HousE [95] R Householder Rotation(S) ✓ ✓ ✓ ✓

ATTH [24] H M¥𝑜bius addition(⊕𝑐 ) ✓ ✓ ✓ ✓

DihEdral [206] G Matrix Product(⊙∗
) ✓ ✓ ✓ ✓

UltraE [204] UH Ultrahyperbolic Transform(𝑓r) ✓ ✓ ✓ ✓

text generation. Several studies [28, 143, 159, 214, 232, 233] have been conducted to substantiate

the benefits provided by models integrating knowledge graphs and large language models.

4.5 Model Complexity
In this section, we incorporate Table 8 to examine the time and space complexity of some KGE

models. Based on the analyses in Table 8, we can draw the following conclusions. First, models

which represent entities and relations as vectors (e.g., TransE, TransH, ComplEx, and UltraE)

are more efficient. They usually have space and time complexity that scales linearly with entity

dimension 𝑑 . HolE needs more time complexity as it computes circular correlation via the discrete

Fourier transform. Second, models which represent relations as matrices (e.g., TransR, SE, and

RESCAL) usually have higher complexity in both space and time. Third, advanced methods (e.g.,

RotE/H, Rot2L, and It𝑜E) may lead to a linear increase in space complexity but not to order. RotE/H

requires more relation parameters since relation transformation vectors and the learnable curvature

for different relations are needed. It is important to mention that non-Euclidean models exhibit

only marginal deviations from Euclidean models in terms of time or space complexity. Regarding

the training cost, it has been demonstrated that hyperbolic embedding typically necessitates more

training time than Euclidean embedding, owing to the fact that the M¥𝑜bius operations in hyperbolic
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Table 8. Comparison of state-of-the-art knowledge graph embedding models, along with their publisher,
math space, time complexity, and space complexity. The complexity results are taken from [122, 181] or
referenced from their corresponding papers. RotE/H results are obtained from Rot2L [179]. 𝑑 and 𝑘 are the
embedding dimensionality of entities and relations, respectively (usually 𝑑 = 𝑘). 𝑁𝑒 and 𝑁𝑟 are the numbers
of entities and relations. 𝜃 denotes the average sparseness degree of projection matrices in TranSparse [76].

Method Publisher Math Space Time Complexity Space Complexity

SE [15] AAAI 2011 Euclidean O(𝑑2) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑2)
RESCAL [130] ICML 2011 Euclidean O(𝑑2) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑2)
TransE [14] NeurIPS 2013 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
TransH [190] AAAI 2014 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
TransR [109] AAAI 2015 Euclidean O(𝑑𝑘) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑𝑘)
TransD [75] ACL-IJCNLP 2015 Euclidean O(max(𝑑, 𝑘)) O(𝑁𝑒𝑑 + 𝑁𝑟𝑘)
DistMult [209] ICLR 2015 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
ComplEx [168] ICML 2016 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
TranSparse [76] AAAI 2016 Euclidean O(𝑑𝑘) O(𝑁𝑒𝑑 + (1 − 𝜃 )𝑁𝑟𝑑𝑘)
HolE [129] AAAI 2016 Euclidean O(𝑑 log𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
ANALOGY [110] ICML 2017 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
ConvE [33] AAAI 2018 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
RotE [24] ACL 2020 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 2𝑁𝑟𝑑)
Rot2L [179] ACL Findings 2021 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 2(𝑁𝑟 + 5)𝑑)
It𝑜ER [124] ACL Findings 2023 Euclidean O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑘)
RotH [24] ACL 2020 Hyperbolic O(𝑑) O(𝑁𝑒𝑑 + 3(𝑁𝑟 + 1)𝑑)
It𝑜EP [124] ACL Findings 2023 Hyperbolic O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑘)
ManifoldES [198] IJCAI 2016 Spherical O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)
It𝑜ES [124] ACL Findings 2023 Spherical O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑘)
UltraE [204] KDD 2022 Ultrahyperbolic O(𝑑) O(𝑁𝑒𝑑 + 𝑁𝑟𝑑)

are far more complex than the Euclidean operations [179]. Simultaneously, the training cost of

various models within the same space tends to fluctuate based on factors such as model size,

mapping method [95] (linear or nonlinear), and the usage of acceleration algorithms [97, 180, 226].

Consequently, we conclude that determining the complexity of a KGE method is a multidimensional

and comprehensive challenge. It is worth emphasising that our survey’s primary objective is to

analyse KGE methods from the standpoint of representation space, and as such, we do not further

explore the intricacies of complexity.

4.6 Suggestions
In Section 4, we present the performance of different KGE models on different downstream tasks

and applications from the mathematics spatial perspective. Here we summarise our analyses

and provide suggestions and guidance for constructing KGE models: (1). Firstly, we analyse the

performances of KGE models in different geometric spaces based on the empirical results in Table 4.

The results show that the hyperbolic-based models have relatively better performance on the

FB15K237 and WN18RR datasets. This is due to the fact that most existing KG datasets are known

to have tree-like or hierarchical structures and thus favour hyperbolic embeddings [45, 126, 163].

Therefore, it is suggested to employ hyperbolic-based models for handling datasets (not limited

to knowledge graphs) that exhibit hierarchical structure. Meanwhile, models that blend various

geometric properties (e.g., UltraE [204], DGS [73], GIE [21] and Concept2Box [72]) have also

achieved promising performance. Nonetheless, it is worth noting that employing sophisticated

geometric embeddings (e.g., hyperbolic embedding) will lead to increased computational complexity,
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Table 9. The advantages and disadvantages of different KGE models from the spatial perspective.

Perspective Subclass/Subspace Examples Properies Advantages Disadvantages

Geometric

Structure

Euclidean Geometry

TransE [14]; RotatE [158];

PairRE [25]; TripleRE [219];

TranS [229]; HopfE [8];

CompoundE [50];

HAKE [231]; H
2
E [185]

The prevalent Euclidean geo-

metric transformations can

effectively capture simple re-

lational patterns and charac-

teristics.

• It is easy and intuitive to

bridge relationships between

entities through a variety of

geometric transformations,

such as translation, rotation,
reflection and scaling.

• The distinctive and het-

erogeneous architecture of

knowledge graphs is closely

associated with geometric

embedding (e.g., Ring KGs vs.
Spheres [160]).

• Non-Euclidean models are

suitable for complex KGs

tasks such as link prediction.

• Advanced geometric

embedding methods (e.g.,

hyperbolic embedding) tend

to be more complex than

Euclidean embedding and

also require more training

time and cost [179].

• Certain geometries might

exhibit diminished benefits

for graphs containing long

paths [147].

Hyperbolic Geometry

MuRP [4]; ATTH [24];

HBE [132]; HyperKA [157];

UltraE [204]; It𝑜E [124];

HypHKGE [237]; H
2
E [185];

H
2
E [185]; HBE [132]

Hyperbolic surface has more

(tree-like) spaces to repre-

sent and capture hierarchy

information.

Spherical Geometry

ManifoldE [198]; GIE [21];

TransC [116]; MuRS [186];

HyperspherE [37]; SEA [55]

Sphere excels at capturing

ring structures by its circu-

larity nature of spherical em-

bedding.

Algebraic

Structure

Vector Space

TransE [14]; RESCAL [130];

TransH [190]; DisMult [209];

ComplEx [168]; RotatE [158];

QuatE [225]; DualE [20];

ConvE [33]; R-GCN [150];

KG-BERT [212]; DKRL [200]

With simple and efficient op-

erations in vector space, the

plausibility of facts can be

easily measured by match-

ing the latent semantics of

entities and relations.

• Using proper algebraic

operations can help KGE

models capture more impor-

tant patterns of knowledge

graphs (e.g., symmetry,
antisymmetry, inversion, and
composition).

• The plausibility of facts

can be measured by match-

ing latent semantics of enti-

ties and relations through ef-

ficient linear operations. [82,

129]

• It should be noted that the

demonstrations of various

algebraic structures are

solely dependent on the

specific KG task itself, and

the extent to which they

can be generalised to other

domains remains uncertain.

• Some operations, such as

M ¥𝑜bius addition [27], may

be less intuitive and conse-

quently challenging to ex-

tend to numerous scenarios.

Group

TorusE [38]; DihEdral [206];

NagE [211]; ModulE [23];

KGLG [39]; DensE [115];

GrpKG [210]

The definition of group can

naturally satisfy the basic

properties (e.g., inversion,
composition) of KGs.

Ring M ¥𝑜biusE [27]

Ring structure is helpful for

orientation-related tasks due

to its non-oriented surface.

Analytic

Structure

Probability Space

TransG [197]; KG2E [65];

DiriE [177]; It𝑜E [124];

GaussianPath [175]

Probabilistic embedding is

capable of acquiring unstruc-

tured patterns and capturing

uncertain information.

• Concentrating on analyt-

ical properties (e.g., uncer-
tainty, continuity, and differ-
entiability.) in the modelling

process enables the KGE sys-

tems to capture stable and

robust representations [124,

125].

• The analytical nature pri-

marily serves as an auxiliary

component in the KGE mod-

elling process and is always

not the predominant factor

in achieving optimal perfor-

mance in downstream tasks.
Euclidean Space FieldE [125]; TANGO [61]

The analytical methods (e.g.,

ODE) facilitate the acquisi-

tion of dynamic and contin-

uous representations of enti-

ties and relations.

resulting in the need for additional training resources. Consequently, caution must be exercised to

manage the model expense or implement a justifiable acceleration of the algorithm when utilising

advanced geometric embeddings. (2). The results of pattern inference (in Section 4.3) are discussed

from an algebraic perspective. The important patterns (e.g., symmetry, antisymmetry, inversion and

composition) of the knowledge graphs are closely related to the algebraic operations employed by

the KGE models. Table 7 reveals that most models that can simultaneously capture all four patterns

gain from Product operations, such as Hadamard product and Hamilton product. This suggests

us to develop more product-based models to capture the relational patterns of KG concurrently.

Moreover, exploring innovative algebraic operations under certain conditions is also worthwhile.

(3). Section 4.4 enumerates a variety of applications in which KGs can be employed across different

domains, encompassing intrinsic applications such as KGQA and knowledge reasoning, as well

as extrinsic applications such as leveraging KGs in Biomedicine. Concurrently, the recent rise of

LLMs [17, 31, 149, 166], which are closely associated with KGs, presents an opportunity for mutual

reinforcement. Nevertheless, LLMs trained on general corpora may not effectively generalise to

specific domains or novel knowledge owing to the absence of domain-specific knowledge or new

training data. In order to solve the above problems, a potential solution is to integrate Knowledge

Graphs into LLMs because of their ability to provide accurate and explicit knowledge. It is also
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well known that KGs have great symbolic reasoning capabilities and can actively evolve with the

continuous input of new knowledge. Therefore, infusing KGs into other domains, enhancing LLM

reasoning with knowledge graphs and interpretability, enriching knowledge graphs with LLMs,

and integrating LLMs with KGs are all promising avenues for future research.

5 Future Directions
In this section, we summarise some core advantages of mathematical structures and propose several

noteworthy future directions, which we hope to inspire the readers to construct more flexible and

adaptable KGE algorithms in the future.

5.1 Algebraic Operation
The ability of knowledge representation is often directly related to the properties of model’s

algebraic operations. The algebraic advantages can sometimes compensate for the model’s short-

comings, which allow the model to handle complex and non-intuitive relationships, such as 1-N,

N-1 and N-M relations. One future direction is to construct a powerful operation that is able to

deal with multiple tasks simultaneously. Recent works such as CompoundE [50] have started using

combination operations to better handle complex relation types in different conditions. Another

promising method is to build a unified algebraic KGE framework [64, 110] for better understanding

the nature of algebraic operations. Nevertheless, algebraically inspired KGE models still have many

perspectives to ponder.

5.2 Geometric Embedding
Several current KGE methods are inspired by some useful geometric properties. For instance,

ManifoldE [198] utilise spherical embedding to extend the entity representation from one point

to a sphere. ATTH [24] provides a hyperbolic embedding for capturing hierarchies based on

hyperbolic isometries. However, most knowledge graphs embrace complicated structures which

results in these existing methods perform poorly when modelling the knowledge graph with

hybrid structures [21]. Hence, it is crucial to establish more comprehensive geometric embedding

methods. Some works provide mixture-curvature embedding [186] or geometry interactive [21]

KGE to enhance the ability of geometric embedding. Another meaningful research direction is

how to build geometric knowledge learning models with low energy, since complex geometric

embedding always needs more training time, especially on large-scale KGs. Wang et al. [179]

provides a fewer parameters “RotH-like [24]” model. However, it is still a worthwhile direction to

build a comprehensive geometric embedding model while keeping low energy consumption.

5.3 Analytical Optimisation
Analytical properties of knowledge representation are of great importance but poorly studied. Any

of these properties, such as convergence, stability, complexity and derivability, etc., will greatly

affect the model performance on downstream tasks. For example, the embedding space has to be

differentiable, or the model could not be trained by gradient descent. Several works focus on solving

certain analytical properties in KGE. TorusE [38] started by analysing convergence, by choosing a

compact Lie group as an embedding space, the model never diverges unlimited and regularisation

is no longer required. In addition, it is worth paying special attention to build some highly efficient

KGE models through optimisation analytically. Peng et al. [135] adopt segmented embeddings to

divide the entity representation space into multiple independent sub-spaces explicitly. Nevertheless,

there still has a long way to go to deal with analytical optimisations, so as to construct more reliable

KGE models in the future.
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5.4 Others
It is worth noting that the above three mathematical perspectives are not independent but comple-

mentary to each other. Therefore, one possible research direction is to build multi-mathematical

perspective models. FieldE [125] employs the neural ODE that represents relations as trajectories

connecting neighbouring nodes in the graph, which can continuously (analytical view) represent

the underlying geometries including Euclidean, Poincare Ball, Hyperboloid and Spherical (geo-

metric view). Moreover, it is of great significance to note the above summarised implications are

not limited to the KGE domain, but indeed can be extended to any domains. Recent works
strongly bear this out. Hyperbolic space can be utilised in generative models [35] geometrically,

neural order differential equations (NODE) are considered as another breakthrough in deep learning

with strong abilities in supervised learning, sequential diffusion [79, 81, 164], etc. In summary,

it is imperative to harness the attributes of mathematical space in order to investigate further

potentialities, encompassing not only Knowledge Graph Embeddings but also extending to various

other domains.

6 Conclusion
Over the recent years, the rapid growth of Knowledge Graph Embedding has been witnessed. As

we have seen in our analysis of the current state of the art, most of the existing works tend to

utilise the properties of different spaces to build knowledge representations. Hence, we present a

comprehensive review of the state-of-the-art KGE techniques from the perspective of representation

spaces, and discuss the existing KGE methods according to three mathematical perspectives: (1)

Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. In particular,

we first introduce the basic concept of mathematical spaces and the relationship between them.

We then introduce and compare the strengths of KGE techniques from different mathematical

perspectives in terms of embedding space, scoring function, optimisation, etc. At the same time,

some unique characteristics of specific spaces are summarised through the experimental results.

For instance, hyperbolic-based models manifest their competence in assimilating hierarchical

information. We also discuss some future directions such as efficient geometric embedding, and

rational optimisation methods. Furthermore, in the context of the burgeoning big model epoch, we

propose several prospective avenues for integrating LLMs and KGs. We believe that it is vital to

analyse the model from the mathematical point of view, to determine more precisely what causes

the possible failures in each method and find the appropriate mathematics tools to solve them. This

article takes the field of KGE as an example to show the powerful role of mathematical spaces and

their properties, thereby inspiring more strong mathematical modelling in more fields.
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