
Meng, Z., McCreadie, R., Macdonald, C. and Ounis, I. (2019) Variational Bayesian

Context-aware Representation for Grocery Recommendation. In: 13th ACM Conference

on Recommender Systems (RecSys19) - CARS 2019 Workshop, Copenhagen, Denmark,

16-20 Sept 2019.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/191246/

Deposited on: 20 August 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/191246/
http://eprints.gla.ac.uk/191246/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Variational Bayesian Context-aware Representation for Grocery
Recommendation

Zaiqiao Meng, Richard McCreadie, Craig Macdonald and Iadh Ounis
University of Glasgow, Scotland, UK
(firstname.lastname)@glasgow.ac.uk

ABSTRACT
Grocery recommendation is an important recommendation use-
case, which aims to predict which items a user might choose to buy
in the future, based on their shopping history. However, existing
methods only represent each user and item by single deterministic
points in a low-dimensional continuous space. In addition, most of
these methods are trained by maximizing the co-occurrence like-
lihood with a simple Skip-gram-based formulation, which limits
the expressive ability of their embeddings and the resulting recom-
mendation performance. In this paper, we propose the Variational
Bayesian Context-Aware Representation (VBCAR) model for gro-
cery recommendation, which is a novel variational Bayesian model
that learns the user and item latent vectors by leveraging basket
context information from past user-item interactions. We train
our VBCAR model based on the Bayesian Skip-gram framework
coupled with the amortized variational inference, so that it can
learn more expressive latent representations that integrate both
the non-linearity and Bayesian behaviour. Experiments conducted
on a large real-world grocery recommendation dataset show that
our proposed VBCAR model can significantly outperform existing
state-of-the-art grocery recommendation methods.

KEYWORDS
Context-Aware, Recommender Systems, Variational Bayesian, Skip-
gram, Grocery Recommendation
ACM Reference Format:
Zaiqiao Meng, Richard McCreadie, Craig Macdonald and Iadh Ounis. 2019.
Variational Bayesian Context-aware Representation for Grocery Recom-
mendation. In ,. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
xxxxxxx.xxxxxxx

1 INTRODUCTION
Recommender systems that use historical customer-product inter-
actions to provide customers with useful suggestions have been
of interest to both academia and industry for many years. Various
matrix completion-based methods [4, 12, 13] have been proposed
to predict the rating scores of products (or items) for customers (or
users). Recently, many grocery recommendation models [3, 15, 16]
were proposed that target grocery shopping use-cases. In real gro-
cery shopping platforms, such as Amazon and Instacart, users’
interactions with items are sequential, personalized and more com-
plex than those represented by a single rating score matrix. Thus
effective recommendation models for this use-case are designed

ACM RecSys, Workshop on Context-Aware Recommender Systems
© 2019 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ,, https:
//doi.org/10.1145/xxxxxxx.xxxxxxx.

to learn representations of users and items so that contextual in-
formation, such as basket context [16] and time context [9], are
captured within the learned representations, which results in in-
creased recommendation performance. In the grocery shopping
domain, prod2vec [3] and triple2vec [16] are two state-of-the-art
models that learn latent representations capturing the basket con-
text, based on the Skip-grammodel for grocery recommendation. In
these models, both the user’s general interest (which items the user
likes) and the personalized dependencies between items (what items
the user commonly includes in the same basket) are encoded by
the embeddings of users and items. Furthermore, when combined
with negative sampling approaches [11], these Skip-gram-based
models are able to scale to very large shopping datasets. Meanwhile,
through the incorporation of basket contextual information dur-
ing representation learning, significant improvements in grocery
recommendation have been observed [3, 16].

However, these representation models still have several defects:
(1) they represent each user and item by single deterministic points
in a low-dimensional continuous space, which limits the expressive
ability of their embeddings and recommendation performances; (2)
their models are simply trained by maximizing the likelihood of
recovering the purchase history, which is a point estimate solution
that is more sensitive to outliers when training [1].

To alleviate the aforementioned problems, we propose a Varia-
tional Bayesian Context-Aware Representation model, abbreviated
as VBCAR, which extends the existing Skip-gram based representa-
tion models for grocery recommendation in two directions. First, it
jointly models the representation of users and items in a Bayesian
manner, which represents users and items as (Gaussian) distribu-
tions and ensures that these probabilistic representations are simi-
lar to their prior distributions (using the variational auto-encoder
framework [5]). Second, the model is optimized according to the
amortized inference network that learns an efficient mapping from
samples to variational distributions [14], which is a method for
efficiently approximating maximum likelihood training. Having
inferred the representation vectors of users and items, we can cal-
culate the preference scores of items for each user based on these
two types of Gaussian embeddings to make recommendations. Our
contributions can be summarized as follows:

(1) We propose a variational Bayesian context-aware repre-
sentation model for grocery recommendation that jointly
learns probabilistic user and item representations while the
item-user-item triples in the shopping baskets can be recon-
structed.

(2) We use the amortized inference neural network to infer the
embeddings of both users and items, which can learn more
expressive latent representations by integrating both the
non-linearity and Bayesian behaviour.

https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx

(3) We validate the effectiveness of our proposed model using a
real large grocery shopping dataset.

2 RELATEDWORK
In this section, we briefly discuss two lines of related work, namely
methods for grocery recommendation and deep neural network-
based methods for recommendation.

A grocery recommender is a type of recommender system em-
ployed in the domain of grocery shopping to support consumers
during their shopping process. The most significant difference be-
tween the grocery recommendation task and other recommendation
tasks, such as video recommendation [13] and movie rating predic-
tion [12], is that the basket contextual information is more common
and important in grocery shopping scenarios. However, most ex-
isting matrix completion-based methods [4, 12, 13] are unable to
incorporate such basket information. Hence, many approaches have
been proposed to learn latent representations that incorporate the
basket information to enhance the performance of grocery recom-
mendation [3, 6, 16], among which Triple2vec [16] is one of the
most effective. Triple2vec [16] is a recent proposed approach, which
uses the Skip-gram model to capture the semantics in the users’
grocery basket for product representation and purchase prediction.
In this paper, we also apply the Skip-gram model to calculate the
likelihood of the basket-based purchase history, but we further ex-
tend it to the Bayesian framework that represents users and items
as Gaussian distributions and optimize them with the Amortized
Inference [5, 14].

Besides the Skip-gram-based models, other deep neural network-
based recommendation methods have also achieved success due
to the highly expressive nature of deep learning techniques [4,
8, 17]. For instance, the Neural Collaborative Filtering [4] model
is a general framework that integrates deep learning into matrix
factorization approaches using implicit feedback. Meanwhile, Li et
al. proposed a collaborative variational auto-encoder [7] that learns
deep latent representations from content data in an unsupervised
manner and also learns implicit relationships between items and
users from both content and ratings. Additionally, to better capture
contextual information, Manotumruksa et al. [9] proposed two
gating mechanisms, i.e. a Contextual Attention Gate (CAG) and
Time- and Spatial-based Gates (TSG), incorporating both time and
geographical information for (venue) recommendation. In this work,
to further enhance the expressive ability of the learned embeddings
for grocery recommendation, we propose to use the variational auto-
encoder-based deep neural network [5] to approximately optimize
the variational lower bound.

3 METHODOLOGY
In this section, we first briefly introduce the basic notations and
the problem that we plan to address (Section 3.1). Next, we briefly
review the Skip-gram model as well as a state-of-the-art represen-
tation model called Triple2vec [16] tailored to grocery recommen-
dation (Section 3.2). Then, we present our proposed representation
learning model, i.e. Variational Bayesian Context-Aware Represen-
tation (VBCAR), as well as show how to use the learned embeddings
for downstream recommendation tasks.

3.1 Problem Definition and Notations
We use U = {u1,u2, · · · ,uN } to denote the set of users and I =
{i1, i2, · · · , iM } to denote the set of items, where N is the number
of users andM is the number of items. Then, in a grocery shopping
scenario, the users’ purchase history can be represented as S =
{(u, i,o) | u ∈ U, i ∈ I,o ∈ O} with O = {o1,o2, · · · ,oL} being
the set of orders (i.e. baskets). We also use Zu ∈ RN×D and Zi ∈
RM×D to denote the latent representation matrices for users and
items, respectively, where D denotes the dimension of these latent
variables.

GivenU, I, O and S, the task we aim to address in our paper
is to infer the latent representation matrices of users and items,
i.e. Zu and Zi , so that the missing preference scores of items for
each user that estimate future user purchase probabilities can be
predicted (using these latent representation matrices).

3.2 Skip-gram and Triple2vec
The Skip-gram model was originally designed for estimating word
representations that capture co-occurrence relations between a
word and its surrounding words in a sentence [11]. It aims to maxi-
mize the log-likelihood of a target entity (word) v predicting con-
textual entities (words) Cv :

logp(Cv | v) =
∑

v ′∈Cv
log P

(
v ′ |v

)
, (1)

where P (v ′ | v) is defined by the softmax formulation P (v ′ |v) =
exp(f Tv дv′)∑
v′′ exp(f Tv дv′′) with fv and дv ′ being the latent representations of

the target entity and its contextual entities, respectively.
The Triple2vec [16] model further extends the Skip-gram model

for capturing co-purchase product relationships within users’ bas-
kets according to sampled triples from the grocery shopping data.
Here each triple reflects two items purchased by the same user in
the same basket. Specifically, Triple2vec samples a set of triples
T = {(u, i, j) | (u, i,o) ∈ S, (u, j,o) ∈ S} from the purchase his-
tory S as the purchase context for training and assumes that a
triple (u, i, j) ∈ T is generated by a probability σ calculated by the
function of p((u, i, j) | zuu , zii , z

i
j):

σ = p((u, i, j) | zuu , zii , z
i
j) = P(i |j,u)P(j |i,u)P(u |i, j), (2)

where zuu ∈ Zu and zii , z
i
j ∈ Zi are the latent representations of user

u and items i and j , respectively, P(i | j,u) =
exp

(
ziTi (zij+zuu)

)
∑
i′ exp

(
ziTi′ (z

i
j+z

u
u)
) and

P(u | i, j) =
exp

(
zuTu (zii+zij)

)
∑
u′ exp

(
zuTu′ (z

i
i+z

i
j)
) . The Skip-gram based models [3, 16]

can learn representations for users and items at scale, and with
the aid of basket information they have previously been shown to
be effective for grocery recommendation. However, these models
represent each user and item by single deterministic points in a low-
dimensional continuous space, which limits the expressive ability
of their embeddings and recommendation performance. To address
this problem, we propose a new Bayesian Skip-gram model that
represents users and items by Gaussian distributions, as illustrated
in Section 3.3.1. Then, we describe how to approximately optimize
the Bayesian Skip-grammodel with a Variational Auto-encoder and

the amortized Inference (Section 3.3.2). We provide an overview of
our overall proposed model in Figure 1.

3.3 The Variational Bayesian Context-aware
Representation Model

3.3.1 Bayesian Skip-gramModel. Here we present our proposed
Variational Bayesian Context-aware Representation model, i.e. VB-
CAR, which represents the users and items as random variables,
i.e. Zu and Zi that are independently generated according to their
priors. Like other probabilistic methods for embedding [10] and
recommender systems [4, 8], these priors are assumed to be the
standard Gaussian distributions:

p
(
Zu

)
=N

(
0,α2I

)
, p

(
Zi

)
=N

(
0,α2I

)
(3)

where α2 is the same hyperparameter for all the priors - we used
the default setting of α = 1 in our paper, following [5].

Consider past purchase triples (u, i, j) ∈ T that are sampled from
historical grocery shopping data [16]. These sampled triples are
positive examples that should be precisely predicted according to the
latent variables of users and items. We use n+ to denote the number
of times that a given triple is observed in the total sample T .Then
n+ is a sufficient statistic of the Skip-gram model, and it contributes
to the likelihood p(n+ | zuu , zii , z

i
j) = σn+ [1]. Thus, one needs to

also construct an associated rejected triples set (i.e. n−, negative
examples) that are not in the total sample so that we can conduct an
efficient negative sampling for approximate optimization [11]. We
let n± = {n+,n−} be the combination of both positive and negative
examples, then the likelihood of this complete purchase context is
obtained by:

logp
(
n±|Zu ,Zi

)
=

∑
(vi ,vj ,uu)∈T

logσ +
∑

(vi ,vj ,uu)<T
log(1 − σ),

(4)
where σ is calculated by the same function as in Triple2vec [16]
(i.e. p((u, i, j) | zuu , zii , z

i
j) in Equation (2)).

3.3.2 The Variational Evidence Lower Bound and Amortized In-
ference. Since we assume that both Zu and Zi are random variables,
the exact inference of their posterior density is intractable due to
the non-differentiable marginal likelihood p

(
n±

)
[5]. Variational

Bayes resolves this issue by constructing a tractable lower bound of
the logarithm marginal likelihood and maximizing the lower bound
instead [2]. Following the Variational Autoencoding framework [5],
we also solve this problem by introducing the two variational dis-
tributions to formulate a tractable lower bound and optimize the
lower bound by the Amortized Inference [14]. To infer the users’
and items’ embedding, we start by formulating the logarithm mar-
ginal likelihood of n±:

logp
(
n±

)
= logEqϕ (Zu ,Zi)

[
p
(
n±,Zu ,Zi

)
qϕ

(
Zu ,Zi

)]
(5)

≥Eqϕ (Zu ,Zi)

[
log

p
(
n±,Zu ,Zi

)
qϕ

(
Zu ,Zi

)]
=Eqϕ (Zu ,Zi)

[
logp

(
n± | Zu ,Zi

)]
− KL

(
qϕ

(
Zu ,Zi

)
∥p(Zu ,Zi)

)
def
=L,

where the inequation of the second line is derived from the Jensen’s
inequality; L is called the Evidence Lower BOund (ELBO) of the
observed triple context [5]; KL(·∥·) is the Kullback-Leibler (KL)
divergence and qϕ (Zu ,Zi) is the variational distribution, which
can be factorized in a mean-field form:

qϕ (Zu ,Zi) = qϕ1 (Z
u)qϕ1 (Z

i), (6)

where ϕ1 and ϕ2 are the trainable parameters of the inference
models (encoders). In order to get more expressive latent factors
of users and items, we consider that the variational distributions
qϕ1 (Zu) and qϕ2 (Zi) are Gaussian distributions and are encoded
from the identity codes of users and items such that we have:

qϕ1

(
Zu | Fu

)
= N

(
µu ,σu2I

)
, (7)

qϕ2

(
Zi | Fi

)
= N

(
µi ,σ i2I

)
, (8)

where Fu ∈ RN×F1 and Fi ∈ RM×F2 are the identity representation
(can be one-hot or binary encoded) of users and items respectively,
with F1 and F2 being the dimension of their identity representation
respectively, and µu , σu2, µi and σ i2 are inferred by the encoder
networks. Specifically, the parameters of these Gaussian embed-
dings are encoded from their identity codes, i.e. Fu and Fi , according
to two two-layer fully-connected neural networks:

[µu ,σu2I] =Wu
2 tanh(W

u
1 F

u + bu1) + b
u
2 , (9)

[µi ,σ i2I] =Wi
2tanh(W

i
2F

i + bi2) + b
i
2, (10)

where tanh is the non-linearity activation function, and Wu
1 , W

u
2 ,

bu1 , b
u
2 , W

i
1, W

i
2, b

i
1 & bi2 are trainable parameters of the neural

networks.
Since we assume the priors and the variational posteriors are

Gaussian distributions, the KL-divergence terms in Equation (5)
have analytical forms. By using the Stochastic Gradient Variational
Bayes (SGVB) estimator and the reparameterization trick [5], we can
directly optimize ELBO by sampling deterministic and differentiable
embedding samples from the inferred variational distributions:

Zu = µu + σu2 ⊙ ϵ (l),ϵ (l) ∼ N (0, I) , (11)

Zi = µi + σ i2 ⊙ ϵ (l),ϵ (l) ∼ N (0, I) ,

to approximate and regularize maximum likelihood training, which
is also referred to as amortized inference [14].

3.4 Recommendation Tasks
Our model infers the embeddings of both users and items according
to the variational auto-encoder and represents them by means of
their variational Gaussian distributions. Since we have taken ad-
vantage of the basket information, having obtained the embedding

Fu
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

N (0,↵2I)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[µu,�u2I]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[µI ,�i2I]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zu
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p
�
n±|Zu,Z

�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

KL(q�(Zu)kp(Zu))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

KL(q�(ZI)kp(Zi))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

N (0,↵2I)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(Zu)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(Zi)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q�1
(Zu | Fu)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q�2
(Zi | Fi)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Side information

(u1, i1, i2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(u2, i4, i5)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(uk, if , ig)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

· · ·<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1: The architecture of our proposed VBCARmodel. The model takes the user and item one-hot identity representation,
i.e. Fu and Fi , as input and outputs Gaussian distributions with means and variances as latent embeddings for all users and
items. Themodel then uses the deterministic variablesZu andZi , reparameterized from their Gaussian distributions, to predict
the sampled triples.

of users and items in our VBCAR model, we can follow a similar ap-
proach to [16] tackling both next-basket product recommendation
and within-basket product recommendation:

(1) Next-basket product recommendation: Recommending a
given useru with products for the next basket, we can obtain
a preference score sui = dot

(
zuu , zii

)
1 for each item i , then

return the top-K items with the highest preference scores.
(2) Within-basket product recommendation: If the products in

the current basket b are given, we can first compute a prefer-
ence score of item i for useru by: sui = dot(zuu+

∑
i′∈b zi

′
i , z

i
i),

then return the top-K preference score items as recommen-
dations.

In this paper, we only evaluate the performance of our model based
on the next-basket product recommendation and leave the evalua-
tion of within-basket product recommendation for future work.

4 EXPERIMENTS
In the following, we first introduce the research questions we aim
to answer in this paper (Section 4.1). Next, we describe our exper-
imental setup (Section 4.2), followed by our results and analysis
(Section 4.3).

4.1 Research Questions
In this paper, we aim to answer the following two research ques-
tions:
(RQ1) Can our proposed model outperform the Triple2vec model

for grocery recommendation?
(RQ2) Can our Bayesian model learn more expressive representa-

tions of users and items than Triple2vec?

4.2 Experimental Setup
Dataset.We evaluate our model using the Instacart [16] dataset,
which is a public large grocery shopping dataset from the Instacart
Online Grocery Shopping Website2. This dataset contains over 3
million grocery orders and 33.8 million interactions from 0.2 million
users and 50 thousand items. We first clean the dataset by filtering
users and items using a number of thresholds. In particular, users

1dot is the dot product for two vectors.
2https://www.instacart.com/datasets/grocery-shopping-2017

that have less than 7 orders or less than 30 items, as well as items
that were purchased by less than 16 users in the purchase history
were removed. Next, we uniformly sample different percentages of
users and items to construct different sizes of evaluation dataset.
For model evaluation, we split all the sampled datasets into training
(80%) and testing (20%) sets according to the temporal order of
baskets. Table 1 shows the statistics of these datasets.

Table 1: Statistics of the datasets in used in our experiments.

Percentage #Users #Items #Orders #Interactions

5% 47,207 5,679 1,441 354,946
10% 154,285 11,888 3,124 1,103,361
25% 527,431 46,850 9,174 4,010,904
50% 1,186,957 59,549 16,121 12,217,555
100% 2,741,332 119,098 32,243 29,598,689

Baseline and Evaluation Metrics. To provide a fair compari-
son, we use Triple2vec [16] as a state-of-the-art baseline, since
Triple2vec incorporates basket information in a similar way to
our proposed VBCAR model. We evaluate the effectiveness of our
model for next-basket (grocery) product recommendation, where
we evaluate the top-K items recommended by each model. We re-
port the standard recommendation evaluation metrics Recall@K
and NDCG@K [4, 16, 17] to evaluate the preference ranking perfor-
mance. We report results forK = 10 in our subsequent experiments,
however we observed similar results when testing other values of
K (e.g. 5 and 20).

4.3 Results and Analysis
To answer RQ1, we evaluate our model as well as the triple2vec
baseline on the task of item recommendation with the same size
of triple samples (i.e. 1 million). Table 2 shows the overall perfor-
mance of our proposed model as well as that of the baseline method.
For both the Triple2vec and our proposed VBCAR approach, we
empirically set the embedding size to be 64 and train both models,
with a batch size of 512 and a RMSprop optimizer. From Table 2,
we can clearly see that our VBCAR model performs better than
Triple2vec on all the datasets. This result suggests that our model
can learn more expressive latent representations by integrating
both non-linearity and a Bayesian behaviour.

https://www.instacart.com/datasets/grocery-shopping-2017

Table 2: Overall performance on item recommendation. The
best performing result is highlighted in bold; and ∗ denotes
a significant difference compared to the baseline result, ac-
cording to the paired t-test p < 0.01.

Dataset Triple2vec VBCAR

NDCG@10 Recall@10 NDCG@10 Recall@10

5% 0.557 0.708 0.731∗ 0.748∗

10% 0.558 0.664 0.723∗ 0.720∗

25% 0.626 0.608 0.686∗ 0.628∗

50% 0.708 0.525 0.719∗ 0.643∗

100% 0.726 0.660 0.768∗ 0.742∗

50k 100k 200k 300k 400k 500k
Sample size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ND
CG

@
10

triple2vec
VBCAR

(a) NDCG@10 performance by different triple size

50k 100k 200k 300k 400k 500k
Sample size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
ca

ll@
10

triple2vec
VBCAR

(b) Recall@10 performance by different triple size

Figure 2: Performance comparison for the various sample
sizes on 5% of the Instacart data.

To further validate this argument (RQ2), we also compare the rec-
ommendation performance of our VBCAR model with Triple2vec
using a different number of triple samples. Figure 2 shows the
NDCG@10 and Recall@10 performances for triple sample sizes
ranging from 50k to 500k. In these experiments, we set the embed-
ding dimension to 64, while the other parameters for both models
are tuned to be optimal except the fixed triple sample size. Again, we
can clearly observe that our VBCAR model outperforms Triple2vec
in terms of both metrics and on all triple sample sizes. Moreover,
the gap between the performance of VBCAR model and Triple2vec
is larger on small sample sizes. This result validates our hypothesis
that our VBCAR model can learn more expressive latent represen-
tations with limited input samples.

5 CONCLUSIONS
In this paper, we have proposed the VBCAR model, a variational
Bayesian context-aware representation model for grocery recom-
mendation. Our model was built based on the variational Bayesian
Skip-gram framework coupled with the amortized inference. Ex-
perimental results on the Instacart dataset show that our VBCAR
model can learn more expressive representations of users and items
than Triple2vec and does significantly outperform Triple2vec under
both the NDCG and Recall metrics. Indeed, we observe up to a 31%
increase in recommendation effectiveness over Triple2vec (under
NDCG@10). For future work, we plan to extend our model to infer
latent representations for new users and new items by taking the
side information about users and items into account.

Acknowledgements
The research leading to these results has received funding from
the European Community’s Horizon 2020 research and innovation
programme under grant agreement n◦ 779747.

REFERENCES
[1] Oren Barkan. 2017. Bayesian neural word embedding. In Thirty-First AAAI

Conference on Artificial Intelligence. 3135–3143.
[2] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational Inference:

A Review for Statisticians. J. Amer. Statist. Assoc. 112, 518 (2017), 859–877.
[3] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,

Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in Your Inbox:
Product Recommendations at Scale. In Proceedings of the 21st ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1809–1818.

[4] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. 173–182.

[5] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
2nd International Conference on Learning Representations, ICLR 2014. 1–14.

[6] Duc Trong Le, HadyW Lauw, and Yuan Fang. 2017. Basket-sensitive Personalized
Item Recommendation. In Proceedings of the 26th International Joint Conference
on Artifical Intelligence. 2060–2066.

[7] Xiaopeng Li and James She. 2017. Collaborative Variational Autoencoder for
Recommender Systems. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 305–314.

[8] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In Proceedings of the 2018
World Wide Web Conference on World Wide Web. 689–698.

[9] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2018. A Contextual
Attention Recurrent Architecture for Context-aware Venue recommendation.
In Proceedings of the 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 555–564.

[10] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019.
Co-embedding Attributed Networks. In Proceedings of the 12th ACM International
Conference on Web Search and Data Mining. 393–401.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Advances in Neural Information Processing Systems. 3111–3119.

[12] AndriyMnih and Ruslan R Salakhutdinov. 2008. ProbabilisticMatrix Factorization.
In Advances in Neural Information Processing Systems. 1257–1264.

[13] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the 25th conference on uncertainty in artificial intelligence. 452–461.

[14] Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and Stefano Ermon.
2018. Amortized Inference Regularization. In Advances in Neural Information
Processing Systems. 4393–4402.

[15] MengtingWan, DiWang,Matt Goldman,Matt Taddy, Justin Rao, Jie Liu, Dimitrios
Lymberopoulos, and Julian McAuley. 2017. Modeling Consumer Preferences
and Price sensitivities From Large-scale Grocery Shopping Transaction Logs. In
Proceedings of the 26th International Conference on World Wide Web. 1103–1112.

[16] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Repre-
senting and Recommending Shopping Baskets with Complementarity, Compat-
ibility and Loyalty. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 1133–1142.

[17] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Definition and Notations
	3.2 Skip-gram and Triple2vec
	3.3 The Variational Bayesian Context-aware Representation Model
	3.4 Recommendation Tasks

	4 Experiments
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Results and Analysis

	5 Conclusions
	References

