1,145 research outputs found

    Curie temperature dependence of magnetic properties of CoNi/Pt multilayer films

    Get PDF
    The Curie temperature of Co1ÂżxNix/Pt multilayer films (x = 0.5 and 0.6) has been studied as a function of CoNi and Pt layer thicknesses. Magnetic properties at room temperature are dominated by the Curie temperature. Interlayer coupling and interdiffusion are discussed as possible contributions to the thickness dependence of the Curie temperature and magnetic properties

    Fundamental optical and magneto-optical constants of Co/Pt and CoNi/Pt multilayered films

    Get PDF
    A study has been made of the optical and magneto-optical properties of several Co/Pt and CoNi/Pt multilayered films that were fabricated by magnetron sputter deposition. Spectroscopic rotating analyzer ellipsometry and Kerr polarimetry were carried out to determine the fundamental optical and magneto-optical constants over the spectral range 320Âż860 nm. The constants determined were the complex refractive index and the first-order magneto-optic Voigt parameter. A total of seven films were examined and excellent reproducibility was observed in the measured material constants. These have been used to discuss the spectral dependence of the figure-of-merit, for each material, associated with the detection of the polar Kerr effect

    Rip/singularity free cosmology models with bulk viscosity

    Full text link
    In this paper we present two concrete models of non-perfect fluid with bulk viscosity to interpret the observed cosmic accelerating expansion phenomena, avoiding the introduction of exotic dark energy. The first model we inspect has a viscosity of the form ζ=ζ0+(ζ1−ζ2q)H{\zeta} = {\zeta}_0 + ({\zeta}_1-{\zeta}_2q)H by taking into account of the decelerating parameter q, and the other model is of the form ζ=ζ0+ζ1H+ζ2H2{\zeta} = {\zeta}_0 + {\zeta}_1H + {\zeta}_2H^2. We give out the exact solutions of such models and further constrain them with the latest Union2 data as well as the currently observed Hubble-parameter dataset (OHD), then we discuss the fate of universe evolution in these models, which confronts neither future singularity nor little/pseudo rip. From the resulting curves by best fittings we find a much more flexible evolution processing due to the presence of viscosity while being consistent with the observational data in the region of data fitting. With the bulk viscosity considered, a more realistic universe scenario is characterized comparable with the {\Lambda}CDM model but without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-

    Palatini approach to 1/R gravity and its implications to the late Universe

    Full text link
    By applying the Palatini approach to the 1/R-gravity model it is possible to explain the present accelerated expansion of the Universe. Investigation of the late Universe limiting case shows that: (i) due to the curvature effects the energy-momentum tensor of the matter field is not covariantly conserved; (ii) however, it is possible to reinterpret the curvature corrections as sources of the gravitational field, by defining a modified energy-momentum tensor; (iii) with the adoption of this modified energy-momentum tensor the Einstein's field equations are recovered with two main modifications: the first one is the weakening of the gravitational effects of matter whereas the second is the emergence of an effective varying "cosmological constant"; (iv) there is a transition in the evolution of the cosmic scale factor from a power-law scaling a∝t11/18a\propto t^{11/18} to an asymptotically exponential scaling a∝exp⁥(t)a\propto \exp(t); (v) the energy density of the matter field scales as ρm∝(1/a)36/11\rho_m\propto (1/a)^{36/11}; (vi) the present age of the Universe and the decelerated-accelerated transition redshift are smaller than the corresponding ones in the Λ\LambdaCDM model.Comment: 5 pages and 2 figures. Accepted in PR

    Spin-Hall effect with quantum group symmetry

    Full text link
    We construct a model of spin-Hall effect on a noncommutative 4 sphere with isospin degrees of freedom (coming from a noncommutative instanton) and invariance under a quantum orthogonal group. The corresponding representation theory allows to explicitly diagonalize the Hamiltonian and construct the ground state; there are both integer and fractional excitations. Similar models exist on higher dimensional noncommutative spheres and noncommutative projective spaces.Comment: v2: 14 pages, latex. Several changes and additional material; two extra sections added. To appear in LMP. Dedicated to Rafael Sorkin with friendship and respec

    Measuring Parton Densities in the Pomeron

    Get PDF
    We present a program to measure the parton densities in the pomeron using diffractive deep inelastic scattering and diffractive photoproduction, and to test the resulting parton densities by applying them to other processes such as the diffractive production of jets in hadron-hadron collisions. Since QCD factorization has been predicted NOT to apply to hard diffractive scattering, this program of fitting and using parton densities might be expected to fail. Its success or failure will provide useful information on the space-time structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended. Uncompressed postscript files available at ftp://ftp.phys.psu.edu/pub/preprint/psuth136

    Allergenicity and oral tolerance of enzymatic cross-linked tropomyosin evaluated using cell and mouse models

    Get PDF
    The enzymatic cross-linking of proteins to form high-molecular-weight compounds may alter their sensitization potential. The IgG-/IgE-binding activity, digestibility, allergenicity, and oral tolerance of cross-linked tropomyosin with tyrosinase (CTC) or horseradish peroxidase (CHP) were investigated. ELISA results demonstrated CTC or CHP reduced its IgE-binding activity by 34.5 ± 1.8 and 63.5 ± 0.6%, respectively. Compared with native tropomyosin or CTC, CHP was more easily digested into small fragments; CHP decreased the degranulation of RBL-2H3 cells and increased endocytosis by dendritic cells. CHP can induce oral tolerance and reduce allergenicity in mice by decreasing IgE and IgG1 levels in serum, the production of T-cell cytokines, and the percentage composition of dendritic cells. These findings demonstrate CHP has more potential of reducing the allergenicity than CTC via influencing the morphology of protein, changing the original method of antigen presentation, modulating the Th1/Th2 immunobalance, and inducing the oral tolerance of the allergen tropomyosin

    Glueballs, gluon condensate, and pure glue QCD below T_c

    Full text link
    A quasiparticle description of pure glue QCD thermodynamics at T<T_c is proposed and compared to recent lattice data. Given that a gas of glueballs with constant mass cannot quantitatively reproduce the early stages of the deconfinement phase transition, the problem is to identify a relevant mechanism leading to the observed sudden increase of the pressure, trace anomaly, etc. It is shown that the strong decrease of the gluon condensate near T_c combined with the increasing thermal width of the lightest glueballs might be the trigger of the phase transition.Comment: 5 pages, 5 figures; analysis refined in v2, explanations added; v3 to appear in EPJ

    Experimental and Numerical Investigation on Thermal Management of an Outdoor Battery Cabinet

    Get PDF
    Many forms of electronic equipment such as battery packs and telecom equipment must be stored in harsh outdoor environment. It is essential that these facilities be protected from a wide range of ambient temperatures and solar radiation. Temperature extremes greatly reduce lead-acid based battery performance and shorten battery life. Therefore, it is important to maintain the cabinet temperature within the optimal values between 20oC and 30oC to ensure battery stability and to extend battery lifespan. To this end, cabinet enclosures with proper thermal management have been developed to house such electronic equipment in a highly weather tight manner, especially for battery cabinet. In this paper, the flow field and temperature distribution inside an outdoor cabinet are studied experimentally and numerically. The battery cabinets house 24 batteries in two configurations namely, two-layer configuration and six-layer configuration respectively. The cabinet walls are maintained at a constant temperature by a refrigeration system. The cabinet’s ability to protect the batteries from an ambient temperature as high as 50oC is studied. An experimental facility is developed to measure the battery surface temperatures and to validate the numerical simulations. The differences between the experimental and computational fluid dynamic (CFD) results are within 5%
    • 

    corecore