4,451 research outputs found

    Nuclear Matter Properties in Derivative Coupling Models Beyond Mean - Field Approximation

    Get PDF
    The structure of infinite nuclear matter is studied with two of the Zimanyi - Moszkowski (ZM) models in the framework of a relativistic approximation which takes into account Hartree terms and beyond and is compared with the results which come out of the relativistic Hartree - Fock approach in the linear Walecka model. The simple treatment applied to these models can be used in substitution to the more complicated Dirac - Brueckner - Hartree - Fock method to perform future calculations in finite nuclei.Comment: 11 pages including 1 table, 1 figure (available upon request

    Evolution of the fine-structure constant in the non-linear regime

    Full text link
    We study the evolution of the fine-structure constant, α\alpha, induced by non-linear density perturbations in the context of the simplest class of quintessence models with a non-minimal coupling to the electromagnetic field, in which the two available free functions (potential and gauge kinetic function) are Taylor-expanded up to linear order. We show that the results obtained using the spherical infall model for an infinite wavelength inhomogeneity are inconsistent with the results of a local linearized gravity study and we argue in favour of the second approach. We also discuss recent claims that the value of α\alpha inside virialised regions could be significantly different from the background one on the basis of these findings.Comment: 5 pages, 3 figure

    Collective modes in relativistic npe matter at finite temperature

    Get PDF
    Isospin and density waves in neutral neutron-proton-electron (npe) matter are studied within a relativistic mean-field hadron model at finite temperature with the inclusion of the electromagnetic field. The dispersion relation is calculated and the collective modes are obtained. The unstable modes are discussed and the spinodals, which separate the stable from the unstable regions, are shown for different values of the momentum transfer at various temperatures. The critical temperatures are compared with the ones obtained in a system without electrons. The largest critical temperature, 12.39 MeV, occurs for a proton fraction y_p=0.47. For y_p=0.3 we get TcrT_{cr} =5 MeV and for y_p>0.495 Tcr≲8T_cr\lesssim 8 MeV. It is shown that at finite temperature the distillation effect in asymmetric matter is not so efficient and that electron effects are particularly important for small momentum transfers.Comment: 10 pages, 6 figure

    Global Defects in Field Theory with Applications to Condensed Matter

    Full text link
    We review investigations on defects in systems described by real scalar fields in (D,1) space-time dimensions. We first work in one spatial dimension, with models described by one and two real scalar fields, and in higher dimensions. We show that when the potential assumes specific form, there are models which support stable global defects for D arbitrary. We also show how to find first-order differential equations that solve the equations of motion, and how to solve models in D dimensions via soluble problems in D=1. We illustrate the procedure examining specific models and showing how they may be used in applications in different contexts in condensed matter physics, and in other areas.Comment: 15 pages, 9 figure

    Seasonal Variation of Forage Productivity and Quality of Communally Managed Grassland in the N’Komati River Basin

    Get PDF
    Livestock production is increasing in Mozambique. This trend, however, is facing such challenges as land tenure, erratic and not well-distributed rainfall (resulting in floods or droughts), overgrazing, wildfires, and the unsustainable resource management practices of communities. The study objectives were to evaluate forage species occurrence and seasonal variation and to estimate grassland productivity, nutritive value and savanna carrying capacity

    Compactlike kinks and vortices in generalized models

    Full text link
    This work deals with the presence of topological defects in k-field models, where the dynamics is generalized to include higher order power in the kinetic term. We investigate kinks in (1,1) dimensions and vortices in (2,1) dimensions, focusing on some specific features of the solutions. In particular, we show how the kinks and vortices change to compactlike solutions, controlled by the parameter used to introduce the generalized models.Comment: 7 pages, 7 figures. Version to be published in PR

    Topological characterization of neutron star crusts

    Get PDF
    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy ion reactions. After the model is shown to produce a plethora of the so-called "pasta" shapes, a series of techniques borrowed from nuclear physics, condensed matter physics and topology are used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way

    Hybrid Stars Built with Density Dependent Models

    Full text link
    Using a density dependent quark model and a relativistic model within the mean-field approximation for hadrons with density dependent meson-baryon couplings, we construct, for the first time, models that describe hybrid neutron stars consisting of nucleons and exotic baryons (hyperons and Δ\Delta-resonances). We do the study using a Maxwell construction. The quark-hadron phase transition in the stellar matter is determined through; the structure, composition, and properties of the hybrid neutron star matter. The macroscopic properties of the star are determined, and the results for these particular models are found to be compatible with recent observational astrophysical data.Comment: 9 pages, 7 figure

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number
    • …
    corecore