648 research outputs found

    Donors in Ge as Qubits: Establishing Physical Attributes

    Full text link
    Quantum electronic devices at the single impurity level demand an understanding of the physical attributes of dopants at an unprecedented accuracy. Germanium-based technologies have been developed recently, creating a necessity to adapt the latest theoretical tools to the unique electronic structure of this material. We investigate basic properties of donors in Ge which are not known experimentally, but are indispensable for qubit implementations. Our approach provides a description of the wavefunction at multiscale, associating microscopic information from Density Functional Theory and envelope functions from state of the art multivalley effective mass calculations, including a central cell correction designed to reproduce the energetics of all group V donor species (P, As, Sb and Bi). With this formalism, we predict the binding energies of negatively ionized donors (D- state). Furthermore, we investigate the signatures of buried donors to be expected from Scanning Tunneling Microscopy (STM). The naive assumption that attributes of donor electrons in other semiconductors may be extrapolated to Ge is shown to fail, similar to earlier attempts to recreate in Si qubits designed for GaAs. Our results suggest that the mature techniques available for qubit realizations may be adapted to germanium to some extent, but the peculiarities of the Ge band structure will demand new ideas for fabrication and control

    Proposal for a single-molecule field-effect transistor for phonons

    Full text link
    We propose a practical realization of a field-effect transistor for phonons. Our device is based on a single ionic polymeric molecule and it gives modulations as large as -25% in the thermal conductance for feasible temperatures and electric field magnitudes. Such effect can be achieved by reversibly switching the acoustic torsion mode into an optical mode through the coupling of an applied electric field to the dipole moments of the monomers. This device can pave the way to the future development of phononics at the nanoscale or molecular scale

    Giant and tunable anisotropy of nanoscale friction in graphene

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPEMIG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAISThe nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.619CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPEMIG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAISCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPEMIG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAISSem informaçãoSem informação2013/08293-7, 2014/15521-9Sem informaçãoAll authors aknowledge the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). R.P. acknowledges Fundação de Amparo a Pesquisa do Estado de São Paulo (Fapesp) for financial support through Grant #2014/15521-9. D.S.G. thanks the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID Grant # 2013/08293-7. Computer simulations carried out during this research were supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). L.G.C. acknowledges FAPEMIG and the grant PRONAMETRO (52600.056330/2012). B.F acknowledges FAPEMIG and the grant PRONAMETRO (52600.030929/2014)

    The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction

    Get PDF
    Funding Information: We thank Drs. Carlos Ribeiro, Christen Mirth, Elio Sucena, Filip Port, Frank Schnorrer, Julien Colombani, Maria Dominguez, Maria Luisa Vasconcelos, Pierre Leopold, Simon Bullock, Rita Teodoro, Gerald Rubin, Melissa Harrison, Kate O’Connor-Giles, Jill Wildonger, Mariana Melani, Pablo Wappner, and Christian Wegener for fly stocks and reagents. We thank Ryohei Yagi and Konrad Basler for the LHV2 plasmid and Brain McCabe for the mhc-Gateway destination plasmid. We thank Carlos Ribeiro and Dennis Goldschmidt for help in designing and constructing one of the pupariation arenas and Mariana Melani, Pablo Wappner, Arash Bashirullah, and Filip Port for sharing resources and unpublished data. We thank Arash Bashirullah, Fillip Port, and Carlos Ribeiro for discussions and/or comments on the manuscript, and Jim Truman for discussions on Fraenkel’s pupariation factors. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used in this study. Work in the Integrative Biomedicine Laboratory was supported by the European Commission FP7 (PCIG13-GA-2013-618847), by the FCT (IF/00022/2012; Congento LISBOA-01-0145-FEDER-022170, cofinanced by FCT/Lisboa2020; UID/Multi/04462/2019; PTDC/BEXBCM/1370/2014; PTDC/MED-NEU/30753/2017; PTDC/BIA-BID/31071/2017; FCT SFRH/BPD/94112/ 2013; SFRH/BD/94931/2013), the MIT Portugal Program (MIT-EXPL/BIO/0097/2017), and FAPESP (16/09659-3, 16/10342-4, and 17/17904-0). AG is a CONICET researcher, YV holds a CONICET postdoctoral fellowship and FPS and MJD hold a PhD fellowship from CONICET. Work in the Garelli lab was supported by ANPCyT (Agencia Nacional para la Promoción de la Ciencia y la Tecnología, PICT 2014-2900 and PICT 2017-0254) and CONICET (PIP11220150100182CO). Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Innate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of Drosophila larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.publishersversionpublishe
    corecore