5,672 research outputs found

    tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of the olive oil-rich Mediterranean diet on breast cancer risk might be underestimated when HER2 (<it>ERB</it>B2) oncogene-positive and HER2-negative breast carcinomas are considered together. We here investigated the anti-HER2 effects of phenolic fractions directly extracted from Extra Virgin Olive Oil (EVOO) in cultured human breast cancer cell lines.</p> <p>Methods</p> <p>Solid phase extraction followed by semi-preparative high-performance liquid chromatography (HPLC) was used to isolate phenolic fractions from commercial EVOO. Analytical capillary electrophoresis coupled to mass spectrometry was performed to check for the composition and to confirm the identity of the isolated fractions. EVOO polyphenolic fractions were tested on their tumoricidal ability against HER2-negative and HER2-positive breast cancer <it>in vitro </it>models using MTT, crystal violet staining, and Cell Death ELISA assays. The effects of EVOO polyphenolic fractions on the expression and activation status of HER2 oncoprotein were evaluated using HER2-specific ELISAs and immunoblotting procedures, respectively.</p> <p>Results</p> <p>Among the fractions mainly containing the <it>single phenols </it>hydroxytyrosol and tyrosol, the <it>polyphenol acid </it>elenolic acid, the <it>lignans </it>(+)-pinoresinol and 1-(+)-acetoxypinoresinol, and the <it>secoiridoids </it>deacetoxy oleuropein aglycone, ligstroside aglycone, and oleuropein aglycone, all the major EVOO polyphenols (<it>i.e. </it>secoiridoids and lignans) were found to induce strong tumoricidal effects within a micromolar range by selectively triggering high levels of apoptotic cell death in HER2-overexpressors. Small interfering RNA-induced depletion of HER2 protein and lapatinib-induced blockade of HER2 tyrosine kinase activity both significantly prevented EVOO polyphenols-induced cytotoxicity. EVOO polyphenols drastically depleted HER2 protein and reduced HER2 tyrosine autophosphorylation in a dose- and time-dependent manner. EVOO polyphenols-induced HER2 downregulation occurred regardless the molecular mechanism contributing to HER2 overexpression (<it>i.e</it>. naturally by gene amplification and ectopically driven by a viral promoter). Pre-treatment with the proteasome inhibitor MG132 prevented EVOO polyphenols-induced HER2 depletion.</p> <p>Conclusion</p> <p>The ability of EVOO-derived polyphenols to inhibit HER2 activity by promoting the proteasomal degradation of the HER2 protein itself, together with the fact that humans have safely been ingesting secoiridoids and lignans as long as they have been consuming olives and OO, support the notion that the stereochemistry of these phytochemicals might provide an excellent and safe platform for the design of new HER2-targeting agents.</p

    Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer

    Get PDF
    Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypesFil: Menendez, Javier A.. Institut Català d'Oncologia; España. Institut d’Investigació Biomèdica de Girona; EspañaFil: Peirce, Susan K.. Clemson University. Pearce Center Professional Communication; Estados UnidosFil: Papadimitropoulou, Adriana. Biomedical Research Foundation Academy of Athens; GreciaFil: Cuyàs, Elisabet. Institut Català d'Oncologia; España. Institut d’Investigació Biomèdica de Girona; EspañaFil: Steen, Travis Vander. Mayo Foundation for Medical Education and Research. Mayo Clinic; Estados UnidosFil: Verdura, Sara. Institut Català d'Oncologia; España. Institut d’Investigació Biomèdica de Girona; EspañaFil: Vellón, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Chen, Wen Y.. Clemson University; Estados UnidosFil: Lupu, Ruth. Mayo Foundation for Medical Education and Research. Mayo Clinic; Estados Unidos. Clemson University; Estados Unidos. Mayo Clinic Cancer Center; Estados Unido

    Differences in the Academic Attributes of Matched and Unmatched Orthopaedic Surgery Residency Applicants are Narrowing

    Get PDF
    Background: Orthopaedic surgery remains one of the most competitive residency specialties, with the number of applicants outpacing the availability of residency positions each year. The purpose of this study was to analyze present-day orthopaedic surgery match data, identify differences between matched and unmatched applicants, and compare our findings to previous trends. Methods: Applicant data from the National Resident Matching Program from 2016 to 2022 were analyzed. The number of matched and unmatched US allopathic senior orthopaedic applicants relative to the number of available positions was used to determine respective match rates. Performance metrics and applicant characteristics were compared by match status. Trends were compared with those of previous analysis from 2006 to 2014. Results: The number of applicants increased from 863 in 2016 to 1,068 in 2022. The match rate decreased from 75% in 2016 to 66% in 2022 (p \u3c 0.0001). Matched applicants had a higher number of contiguous ranks (12.3 vs. 6.5; p \u3c 0.001), United States Medical Licensing Examination (USMLE) Step-1 score (248 vs. 240; p \u3c 0.001), USMLE Step-2 score (255 vs. 247; p \u3c 0.001), Alpha Omega Alpha (AOA) membership (38% vs. 13%; p \u3c 0.001), and enrollment at a top 40 National Institutes of Health (NIH)-funded medical school (34% vs. 24%, p \u3c 0.001). Compared with 2006 to 2014 data, a smaller percentage of matched applicants were enrolled in a top 40 NIH-funded medical school (34% vs. 37%, p = 0.013). The mean differences in USMLE Step1 score (16 vs. 8.25 points, p \u3c 0.001) and USMLE Step-2 score (16 vs. 8.25 points, p = 0.002) in favor of matched applicants nearly halved compared with that in 2006 to 2014. In addition, there was no longer a significant difference in the number of research products (abstracts, presentations, posters, and publications) between matched and unmatched applicants (p= 0.309). Conclusions: Differences in the academic attributes of matched and unmatched orthopaedic surgery applicants have become less profound over time, making it increasingly difficult to predict a successful match based on USMLE Step scores, AOA membership, research productivity, and medical school research reputation. Future studies should evaluate differences in subjective metrics (e.g., away rotation and interview performance and letters of recommendation) by match status

    De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy

    Get PDF
    Enhanced lipid biosynthesis is a characteristic feature of cancer. Deregulated lipogenesis plays an important role in tumour cell survival. These observations suggest that enzymes in the lipid synthesis pathway would be rational therapeutic targets for cancer. To this end, we review the enzymes in de novo fatty-acid synthesis and related pathways

    Transphosphorylation of kinase-dead HER3 and breast cancer progression: a new standpoint or an old concept revisited?

    Get PDF
    Although neither kinase-dead human epidermal growth factor receptor (HER)3 nor orphan HER2 can be activated by HER-related ligands on their own, the formation of HER2/HER3 heterodimers creates the most mitogenic and transforming receptor complex within the HER (erbB) family of transmembrane receptor tyrosine kinases. The incorporation of markers such as HER3 transactivation, HER2/HER3 dimer, or others that may provide information regarding the level of HER pathway engagement has been demonstrated to allow identification of patients who respond to or escape HER-targeted therapies. Pioneering studies showed that high expression of kinase-dead HER3 can predict early escape from the anti-HER2 monoclonal antibody trastuzumab. Also, the growth-inhibitory effects of HER1/2 tyrosine kinase inhibitors (TKIs) were previously found to be attenuated in the presence of heregulin, which is a high-affinity combinatorial ligand for HER3. All of these concepts are being revisited with respect to the efficacy of HER family TKI therapies; in particular, HER3 signalling buffered against incomplete inhibition of HER2 kinase activity has been suggested to be the mechanism that allows HER2 over-expressing breast cancer cells to escape HER TKIs. It remains to be elucidated whether reactivation of HER3 signalling can also account for the poor efficacy of HER TKIs in treating breast carcinomas that contain low overall levels of HER2 receptors. However, it appears that regardless of the mechanism that triggers the formation of oncogenic HER2/HER3 heterodimers (HER2 over-expression or overall low HER2 but high levels of the HER3 ligand heregulin), HER3 transphosphorylation is a common response of breast cancer cells upon treatment with current inhibitors of the HER receptor tyrosine kinase network. Because kinase-inactive HER3 is not presently an amenable target for forthcoming HER TKIs, molecular approaches that can efficiently block heregulin-triggered HER3 transactivation or nucleocytoplasmic trafficking of heregulin might offer novel strategies with which to manage HER-driven breast cancer disease

    Olive oil's bitter principle reverses acquired autoresistance to trastuzumab (Herceptinâ„¢) in HER2-overexpressing breast cancer cells

    Get PDF
    [Background] A low incidence of breast cancer in the Mediterranean basin suggests that a high consumption of Extra Virgin Olive Oil (EVOO) might confer this benefit. While the anti-HER2 oncogene effects of the main ω-9 fatty acid present in EVOO triacylglycerols (i.e., oleic acid) have been recently described, the anti-breast cancer activities of EVOO non-glyceridic constituents -which consist of at least 30 phenolic compounds-, remained to be evaluated. [Methods] Semi-preparative HPLC was used to isolate EVOO polyphenols (i.e., tyrosol, hydroxytyrosol, oleuropein). Both the anti-proliferative and the pro-apoptotic effects of EVOO phenolics were evaluated by using MTT-based quantification of metabolically viable cells and ELISA-based detection of histone-associated DNA fragments, respectively. The nature of the interaction between oleuropein aglycone and the anti-HER2 monoclonal antibody trastuzumab (Herceptin™) was mathematically evaluated by the dose-oriented isobologram technique. HER2-specific ELISAs were employed to quantitatively assess both the basal cleavage of the HER2 extracellular domain (ECD) and the expression level of total HER2. The activation status of HER2 was evaluated by immunoblotting procedures using a monoclonal antibody specifically recognizing the tyrosine phosphorylated (Phosphor-Tyr1248) form of HER2. [Results] Among EVOO polyphenols tested, oleuropein aglycone was the most potent EVOO phenolic in decreasing breast cancer cell viability. HER2 gene-amplified SKBR3 cells were ~5-times more sensitive to oleuropein aglycone than HER2-negative MCF-7 cells. Retroviral infection of the HER2 oncogene in MCF-7 cells resulted in a "SKBR3-assimilated" phenotype of hypersensitivity to oleuropein aglycone. An up to 50-fold increase in the efficacy of trastuzumab occurred in the presence of oleuropein aglycone. A preclinical model of acquired autoresistance to trastuzumab (SKBR3/Tzb100 cells) completely recovered trastuzumab sensitivity (> 1,000-fold sensitization) when co-cultured in the presence of oleuropein aglycone. Indeed, the nature of the interaction between oleuropein aglycone and trastuzumab was found to be strongly synergistic in Tzb-resistant SKBR3/Tzb100 cells. Mechanistically, oleuropein aglycone treatment significantly reduced HER2 ECD cleavage and subsequent HER2 auto-phosphorylation, while it dramatically enhanced Tzb-induced down-regulation of HER2 expression. [Conclusion] Olive oil's bitter principle (i.e., oleuropein aglycone) is among the first examples of how selected nutrients from an EVOO-rich "Mediterranean diet" directly regulate HER2-driven breast cancer disease.JAM is the recipient of a Basic, Clinical and Translational Research Award (BCTR0600894) from the Susan G. Komen Breast Cancer Foundation (Texas, USA). This work was also supported by the Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Fondo de Investigación Sanitaria -FIS-, Spain, Grants CP05-00090 and PI06-0778 to JAM, and Grant RD06-0020-0028 to JAM, RC and JB)

    Duration of Protection and Age-Dependence of the Effects of the SPf66 Malaria Vaccine in African Children Exposed to Intense Transmission of Plasmodium falciparum

    Get PDF
    The SPf66 synthetic vaccine is safe and partly efficacious against Plasmodium falciparum malaria among children 1-5 years old. The estimated vaccine efficacy [VE] for all clinical episodes over a period of 18 months after the third dose is 25% (95% confidence interval [CI], 1%-44%; P = .044). The observed temporal variations in efficacy could have been due to chance (likelihood ratio χ2 = 13.8,8 df; P = .086). Efficacy against clinical malaria did not vary significantly with age χ2 = 1.07, 4 df; P = .90). Overall parasite density was 21% lower in vaccine recipients than in the placebo group (95% CI, 0%-38%; P = .044). Further development of SPf66 may require trials to evaluate safety, immunogenicity, and efficacy when administered in the first year of life, together with other vaccines contained in the Expanded Programme of Tmmunization schedul
    • …
    corecore