36 research outputs found

    Immunogenicity and safety of AZD2816, a beta (B.1.351) variant COVID-19 vaccine, and AZD1222 (ChAdOx1 nCoV-19) as third-dose boosters for previously vaccinated adults:a multicentre, randomised, partly double-blinded, phase 2/3 non-inferiority immunobridging study in the UK and Poland

    Get PDF
    Background: This study aimed to evaluate AZD2816, a variant-updated COVID-19 vaccine expressing the full-length SARS-CoV-2 beta (B.1.351) variant spike protein that is otherwise similar to AZD1222 (ChAdOx1 nCoV-19), and AZD1222 as third-dose boosters.Methods: This phase 2/3, partly double-blinded, randomised, active-controlled study was done at 19 sites in the UK and four in Poland. Adult participants who had received a two-dose AZD1222 or mRNA vaccine primary series were randomly assigned by means of an Interactive Response Technology–Randomisation and Trial Supply Management system (1:1 within each primary-series cohort, stratified by age, sex, and comorbidities) to receive AZD1222 or AZD2816 (intramuscular injection; 5 × 1010 viral particles). Participants, investigators, and all sponsor staff members involved in study conduct were masked to randomisation. AZD1222 and AZD2816 doses were prepared by unmasked study staff members. The primary objectives were to evaluate safety and humoral immunogenicity (non-inferiority of day-29 pseudovirus neutralising antibody geometric mean titre [GMT] against ancestral SARS-CoV-2: AZD1222 booster vs AZD1222 primary series [historical controls]; margin 0·67; SARS-CoV-2-seronegative participants). This study is registered with ClinicalTrials.gov, NCT04973449, and is completed.Findings: Between June 27 and Sept 30, 2021, 1394 participants of the 1741 screened were randomly assigned to AZD1222 or AZD2816 following an AZD1222 (n=373, n=377) or mRNA vaccine (n=322, n=322) primary series. In SARS-CoV-2-seronegative participants receiving AZD1222 or AZD2816, 78% and 80% (AZD1222 primary series) and 90% and 93%, respectively (mRNA vaccine primary series) reported solicited adverse events to the end of day 8; 2%, 2%, 1%, and 1% had serious adverse events and 12%, 12%, 10%, and 11% had adverse events of special interest, respectively, to the end of day 180. The primary immunogenicity non-inferiority endpoint was met: day-29 neutralising antibody GMT ratios (ancestral SARS-CoV-2) were 1·02 (95% CI 0·90–1·14) and 3·47 (3·09–3·89) with AZD1222 booster versus historical controls (AZD1222 and mRNA vaccine primary series, respectively). Responses against beta were greater with AZD2816 versus AZD1222 (GMT ratios, AZD1222, mRNA vaccine primary series 1·84 [1·63–2·08], 2·22 [1·99–2·47]).Interpretation: Both boosters were well tolerated, with immunogenicity against ancestral SARS-CoV-2 similar to AZD1222 primary-series vaccination. AZD2816 gave greater immune responses against beta versus AZD1222.Funding: AstraZeneca

    Immunogenicity and safety of AZD2816, a beta (B.1.351) variant COVID-19 vaccine, and AZD1222 (ChAdOx1 nCoV-19) as third-dose boosters for previously vaccinated adults: a multicentre, randomised, partly double-blinded, phase 2/3 non-inferiority immunobridging study in the UK and Poland

    Get PDF
    BACKGROUND: This study aimed to evaluate AZD2816, a variant-updated COVID-19 vaccine expressing the full-length SARS-CoV-2 beta (B.1.351) variant spike protein that is otherwise similar to AZD1222 (ChAdOx1 nCoV-19), and AZD1222 as third-dose boosters. METHODS: This phase 2/3, partly double-blinded, randomised, active-controlled study was done at 19 sites in the UK and four in Poland. Adult participants who had received a two-dose AZD1222 or mRNA vaccine primary series were randomly assigned by means of an Interactive Response Technology-Randomisation and Trial Supply Management system (1:1 within each primary-series cohort, stratified by age, sex, and comorbidities) to receive AZD1222 or AZD2816 (intramuscular injection; 5 × 1010 viral particles). Participants, investigators, and all sponsor staff members involved in study conduct were masked to randomisation. AZD1222 and AZD2816 doses were prepared by unmasked study staff members. The primary objectives were to evaluate safety and humoral immunogenicity (non-inferiority of day-29 pseudovirus neutralising antibody geometric mean titre [GMT] against ancestral SARS-CoV-2: AZD1222 booster vs AZD1222 primary series [historical controls]; margin 0·67; SARS-CoV-2-seronegative participants). This study is registered with ClinicalTrials.gov, NCT04973449, and is completed. FINDINGS: Between June 27 and Sept 30, 2021, 1394 participants of the 1741 screened were randomly assigned to AZD1222 or AZD2816 following an AZD1222 (n=373, n=377) or mRNA vaccine (n=322, n=322) primary series. In SARS-CoV-2-seronegative participants receiving AZD1222 or AZD2816, 78% and 80% (AZD1222 primary series) and 90% and 93%, respectively (mRNA vaccine primary series) reported solicited adverse events to the end of day 8; 2%, 2%, 1%, and 1% had serious adverse events and 12%, 12%, 10%, and 11% had adverse events of special interest, respectively, to the end of day 180. The primary immunogenicity non-inferiority endpoint was met: day-29 neutralising antibody GMT ratios (ancestral SARS-CoV-2) were 1·02 (95% CI 0·90-1·14) and 3·47 (3·09-3·89) with AZD1222 booster versus historical controls (AZD1222 and mRNA vaccine primary series, respectively). Responses against beta were greater with AZD2816 versus AZD1222 (GMT ratios, AZD1222, mRNA vaccine primary series 1·84 [1·63-2·08], 2·22 [1·99-2·47]). INTERPRETATION: Both boosters were well tolerated, with immunogenicity against ancestral SARS-CoV-2 similar to AZD1222 primary-series vaccination. AZD2816 gave greater immune responses against beta versus AZD1222. FUNDING: AstraZeneca

    Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons

    Get PDF
    Our understanding of the molecular processes underlying Alzheimer’s disease (AD) is still limited, hindering the development of effective treatments, and highlighting the need for human-specific models. Advances in identifying components of the amyloid cascade are progressing, including the role of the protein clusterin in mediating β-amyloid (Aβ) toxicity. Mutations in the clusterin gene (CLU), a major genetic AD risk factor, are known to have important roles in Aβ processing. Here we investigate how CLU mediates Aβ-driven neurodegeneration in human induced pluripotent stem cell (iPSC)-derived neurons. We generated a novel CLU-knockout iPSC line by CRISPR/Cas9-mediated gene editing to investigate Aβ-mediated neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPSCs. We measured response to Aβ using an imaging assay and measured changes in gene expression using qPCR and RNA sequencing. In wild type neurons imaging indicated that neuronal processes degenerate following treatment with Aβ25-35 peptides and Aβ1-42 oligomers, in a dose dependent manner, and that intracellular levels of clusterin are increased following Aβ treatment. However, in CLU knockout neurons Aβ exposure did not affect neurite length, suggesting that clusterin is an important component of the amyloid cascade. Transcriptomic data were analyzed to elucidate the pathways responsible for the altered response to Aβ in neurons with the CLU deletion. Four of the five genes previously identified as downstream to Aβ and Dickkopf-1 (DKK1) proteins in an Aβ-driven neurotoxic pathway in rodent cells were also dysregulated in human neurons with the CLU deletion. AD and lysosome pathways were the most significantly dysregulated pathways in the CLU knockout neurons, and pathways relating to cytoskeletal processes were most dysregulated in Aβ treated neurons. The absence of neurodegeneration in the CLU knockout neurons in response to Aβ compared to the wild type neurons supports the role of clusterin in Aβ-mediated AD pathogenesis

    Improving the efficiency and effectiveness of an industrial SARS-CoV-2 diagnostic facility.

    Get PDF
    On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories

    Drug Development and Alzheimer Disease

    No full text

    Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors

    No full text
    Slow and persistent synaptic inhibition is mediated by metabotropic GABAB receptors (GABABRs). GABABRs are responsible for the modulation of neurotransmitter release from presynaptic terminals and for hyperpolarization at postsynaptic sites. Postsynaptic GABABRs are predominantly found on dendritic spines, adjacent to excitatory synapses, but the control of their plasma membrane availability is still controversial. Here, we explore the role of glutamate receptor activation in regulating the function and surface availability of GABABRs in central neurons. We demonstrate that prolonged activation of NMDA receptors (NMDA-Rs) leads to endocytosis, a diversion from a recycling route, and subsequent lysosomal degradation of GABABRs. These sorting events are paralleled by a reduction in GABABR-dependent activation of inwardly rectifying K+ channel currents. Postendocytic sorting is critically dependent on phosphorylation of serine 783 (S783) within the GABABR2 subunit, an established substra

    Phospho-dependent binding of the clathrin AP2 adaptor complex to GABA(A) receptors regulates the efficacy of inhibitory synaptic transmission

    No full text
    The efficacy of synaptic inhibition depends on the number of γ-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABA(A)R β subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the β3 subunit) incorporates the major sites of serine phosphorylation within receptor β subunits, and phosphorylation within this site inhibits AP2 binding. Furthermore, by using surface plasmon resonance, we establish that a peptide (pepβ3) corresponding to the AP2 binding motif in the GABA(A)R β3 subunit binds to AP2 with high affinity only when dephosphorylated. Moreover, the pepβ3 peptide, but not its phosphorylated equivalent (pepβ3-phos), enhanced the amplitude of miniature inhibitory synaptic current and whole cell GABA(A)R current. These effects of pepβ3 on GABA(A)R current were occluded by inhibitors of dynamin-dependent endocytosis supporting an action of pepβ3 on GABA(A)R endocytosis. Therefore phospho-dependent regulation of AP2 binding to GABA(A)Rs provides a mechanism to specify receptor cell surface number and the efficacy of inhibitory synaptic transmission
    corecore