3 research outputs found

    Recovery of pectinases from Aspergillus niger using aqueous two-phase systems / Recuperação de pectinases de Aspergillus niger usando sistemas aquosos bifásicos

    Get PDF
    This work aimed to study the purification of pectinases by aqueous two-phase systems (ATPS). The crude enzymatic extract was produced by Aspergillus niger ATCC 9642 and contained exo-polygalacturonase (exo-PG), pectinmethylesterase (PME) and pectin lyase (PMGL). The ATPS systems tested consisted in the combinations of polyethylene glycol (PEG) and potassium phosphate and sodium citrate, alcohol (ethanol, n-propanol and isopropanol) and salt (ammonium sulfate, potassium phosphate and sodium citrate). The experiments showed higher recoveries using ATPS system - PEG/phosphate for the exo-PG were using 16% PEG 4.0 kDa/4.8% NaCl and 16% PEG 1.5 kDa/without NaCl, obtaining purification factors (PF) of 1.37 and 1.21 times and recovery (R) of 49 and 59%, respectively. However, for the enzymes PME and PMGL were of 4.8 and 4.7 fold and 478 and 241%, respectively. When used ATPS system - PEG/sodium citrate the best PF were of 2.4, 7.85 and 5.7 and R of 100, 331 and 239% for exo-PG, PME and PMGL, respectively. The ATPS system is an alternative and efficient method for the recovery and/or purification of pectinases. This work aimed to study the purification of pectinases by aqueous two-phase systems (ATPS). The crude enzymatic extract was produced by Aspergillus niger ATCC 9642 and contained exo-polygalacturonase (exo-PG), pectinmethylesterase (PME) and pectin lyase (PMGL). The ATPS systems tested consisted in the combinations of polyethylene glycol (PEG) and potassium phosphate and sodium citrate, alcohol (ethanol, n-propanol and isopropanol) and salt (ammonium sulfate, potassium phosphate and sodium citrate). The experiments showed higher recoveries using ATPS system - PEG/phosphate for the exo-PG were using 16% PEG 4.0 kDa/4.8% NaCl and 16% PEG 1.5 kDa/without NaCl, obtaining purification factors (PF) of 1.37 and 1.21 times and recovery (R) of 49 and 59%, respectively. However, for the enzymes PME and PMGL were of 4.8 and 4.7 fold and 478 and 241%, respectively. When used ATPS system - PEG/sodium citrate the best PF were of 2.4, 7.85 and 5.7 and R of 100, 331 and 239% for exo-PG, PME and PMGL, respectively. The ATPS system is an alternative and efficient method for the recovery and/or purification of pectinases. This work aimed to study the purification of pectinases by aqueous two-phase systems (ATPS). The crude enzymatic extract was produced by Aspergillus niger ATCC 9642 and contained exo-polygalacturonase (exo-PG), pectinmethylesterase (PME) and pectin lyase (PMGL). The ATPS systems tested consisted in the combinations of polyethylene glycol (PEG) and potassium phosphate and sodium citrate, alcohol (ethanol, n-propanol and isopropanol) and salt (ammonium sulfate, potassium phosphate and sodium citrate). The experiments showed higher recoveries using ATPS system - PEG/phosphate for the exo-PG were using 16% PEG 4.0 kDa/4.8% NaCl and 16% PEG 1.5 kDa/without NaCl, obtaining purification factors (PF) of 1.37 and 1.21 times and recovery (R) of 49 and 59%, respectively. However, for the enzymes PME and PMGL were of 4.8 and 4.7 fold and 478 and 241%, respectively. When used ATPS system - PEG/sodium citrate the best PF were of 2.4, 7.85 and 5.7 and R of 100, 331 and 239% for exo-PG, PME and PMGL, respectively. The ATPS system is an alternative and efficient method for the recovery and/or purification of pectinases

    Effect of ultrasound on Biceps femoris muscle tenderization in Nellore cattle

    Get PDF
    ABSTRACT: The effect of ultrasound on Biceps femoris muscle tenderness was investigated using a 22 Central Composite Rotatable Design (CCRD) with triplicates at the central point. We evaluated the following independent variables: ultrasound intensity ranging from 11.30 to 33.90 W cm-2 and exposure time between 35 and 205 s. The ultrasound bath’s frequency (80 kHz) and temperature (10 ºC) were the fixed ones. To validate the model, the muscle was treated at the CCRD’s optimized condition (80 kHz, 22.60 W cm-2, 120 s, 10 ºC) evaluated, and compared with the muscle control sample (non-treated). A 22% shear force reduction was observed compared to the control sample (no ultrasound treatment) after 144 h, and stored at 5 ºC. Moreover, a sarcoplasmic calcium concentration increase was noted for ultrasound-treated muscle, probably activating the calpain enzyme system. In contrast, no significant influence (P > 0.05) was observed for pH, color index, lipid oxidation, water holding capacity, and drip loss by ultrasound treatment at the optimized conditions. Therefore, ultrasound application is promising and suitable for improving muscle tenderness without losing meat quality. This study highlighted the ultrasound effect on the tenderness of a less studied muscle (Biceps femoris) by combining short ultrasound exposure (120 s) and an 80 kHz frequency
    corecore