115 research outputs found

    Heat transport in the XXZXXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    Get PDF
    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly-interacting regime, as evidenced by the heat-current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly-interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly-interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size

    Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities

    Full text link
    In the present paper we introduce a way of identifying quantum phase transitions of many-body systems by means of local time correlations and Leggett-Garg inequalities. This procedure allows to experimentally determine the quantum critical points not only of finite-order transitions but also those of infinite order, as the Kosterlitz-Thouless transition that is not always easy to detect with current methods. By means of simple analytical arguments for a general spin-1/21 / 2 Hamiltonian, and matrix product simulations of one-dimensional XXZX X Z and anisotropic XYX Y models, we argue that finite-order quantum phase transitions can be determined by singularities of the time correlations or their derivatives at criticality. The same features are exhibited by corresponding Leggett-Garg functions, which noticeably indicate violation of the Leggett-Garg inequalities for early times and all the Hamiltonian parameters considered. In addition, we find that the infinite-order transition of the XXZX X Z model at the isotropic point can be revealed by the maximal violation of the Leggett-Garg inequalities. We thus show that quantum phase transitions can be identified by purely local measurements, and that many-body systems constitute important candidates to observe experimentally the violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys. Rev.

    Transport enhancement from incoherent coupling between one-dimensional quantum conductors

    Get PDF
    We study the non-equilibrium transport properties of a highly anisotropic two-dimensional lattice of spin-1/2 particles governed by a Heisenberg XXZ Hamiltonian. The anisotropy of the lattice allows us to approximate the system at finite temperature as an array of incoherently coupled one-dimensional chains. We show that in the regime of strong intrachain interactions, the weak interchain coupling considerably boosts spin transport in the driven system. Interestingly, we show that this enhancement increases with the length of the chains, which is related to superdiffusive spin transport. We describe the mechanism behind this effect, compare it to a similar phenomenon in single chains induced by dephasing, and explain why the former is much stronger

    Dynamics of Entanglement and the Schmidt Gap in a Driven Light-Matter System

    Full text link
    The ability to modify light-matter coupling in time (e.g. using external pulses) opens up the exciting possibility of generating and probing new aspects of quantum correlations in many-body light-matter systems. Here we study the impact of such a pulsed coupling on the light-matter entanglement in the Dicke model as well as the respective subsystem quantum dynamics. Our dynamical many-body analysis exploits the natural partition between the radiation and matter degrees of freedom, allowing us to explore time-dependent intra-subsystem quantum correlations by means of squeezing parameters, and the inter-subsystem Schmidt gap for different pulse duration (i.e. ramping velocity) regimes -- from the near adiabatic to the sudden quench limits. Our results reveal that both types of quantities indicate the emergence of the superradiant phase when crossing the quantum critical point. In addition, at the end of the pulse light and matter remain entangled even though they become uncoupled, which could be exploited to generate entangled states in non-interacting systems.Comment: 15 pages, 4 figures, Accepted for publication in Journal of Physics B, special issue Correlations in light-matter interaction

    Beyond mean-field bistability in driven-dissipative lattices: bunching-antibunching transition and quantum simulation

    Full text link
    In the present work we investigate the existence of multiple nonequilibrium steady states in a coherently driven XY lattice of dissipative two-level systems. A commonly used mean-field ansatz, in which spatial correlations are neglected, predicts a bistable behavior with a sharp shift between low- and high-density states. In contrast one-dimensional matrix product methods reveal these effects to be artifacts of the mean-field approach, with both disappearing once correlations are taken fully into account. Instead, a bunching-antibunching transition emerges. This indicates that alternative approaches should be considered for higher spatial dimensions, where classical simulations are currently infeasible. Thus we propose a circuit QED quantum simulator implementable with current technology to enable an experimental investigation of the model considered
    corecore