2 research outputs found

    Super Typhoon Bopha and the Mayo River Debris-Flow Disaster, Mindanao, Philippines, December 2012

    Get PDF
    Category 5 (C5) Super Typhoon Bopha, the world’s worst storm of 2012, formed abnormally close to the West Pacific Equator, and Bopha’s Mindanao landfall has the record equatorial proximity for C5 storms. Bopha generated a debris flow that buried 500 ha of New Bataan municipality and killed 566 people. New Bataan, established in 1968, had never experienced super typhoons and debris flows. We describe the respective histories of New Bataan and Super Typhoon Bopha; debris flows; and how population growth and unwise settlement practices contribute to Philippine “natural” disasters. The historical record of Mindanao tropical cyclones yields clues regarding how climate change may be exacerbating near-equatorial vulnerability to typhoons. Existing models of future typhoon behavior do not apply well to Mindanao because they evaluate only the tropical cyclones that occur during the main June–October typhoon season, and most Mindanao tropical cyclones occur in the off season. The models also ignore tropical depressions, the most frequent—and commonly lethal—Mindanao cyclones. Including these in annual tallies of Mindanao cyclones up to early 2018 reveals a pronounced and accelerating increase since 1990. Mindanao is susceptible to other natural hazards, including other consequences of climate change and volcanic activity

    Norway's Battery Electric Vehicles and Public Health- Findings From the Literature.

    No full text
    The transportation sector is among the highest contributors to the increase in greenhouse gas emissions in European nations, with private cars emerging as the primary source. Although reducing emissions presents a formidable challenge, the emergence of battery electric vehicles (BEVs) offers a promising and sustainable avenue toward achieving zero greenhouse gases within the transportation infrastructure. Since the 1990s, the Norwegian parliament has fervently supported this transition, leveraging public awareness campaigns and a range of financial incentives for its users nationwide. The widespread utilization of BEVs promises substantial health benefits, including ensuring cleaner air for all citizens regardless of their socioeconomic status and fostering improvements in public health outcomes. This transition potentially curtails hundreds of thousands of annual deaths attributed to climate change, enhances the quality of life, bolsters civilian productivity, and fuels economic and population growth. The adoption of BEVs offers a myriad of advantages, including reduced health risks and premature mortality, as well as a quieter environment with diminished noise pollution. Nonetheless, the integration of BEVs necessitates robust road infrastructure with considerable maintenance costs, alongside limitations on driving range for users. Concerns arise regarding potential particle emissions from BEV tire wear due to the increased weight of batteries compared to conventional vehicles. Rapid acceleration capabilities may accelerate tire degradation, contributing to higher particle emissions, of which only 10% to 20% remain suspended in the air, whereas the majority settles on road surfaces, posing a threat to nearby aquatic ecosystems when washed into water bodies and soils. While BEVs hold promise for valuable benefits, successful policy creation and implementation require a detailed awareness of their limitations and challenges to ensure a comprehensive approach to sustainable mobility and public health improvement. Therefore, more research on the limitations of BEVs can help inform improved tactics for maximizing their benefits while limiting potential disadvantages
    corecore