2,423 research outputs found

    Turning it inside out: The organization of human septin heterooligomers.

    Get PDF
    Septin family proteins are quite similar to each other both within and between eukaryotic species. Typically, multiple discrete septins co-assemble into linear heterooligomers (usually hexameric or octameric rods) with a variety of cellular functions. We know little about how incorporation of different septins confers different properties to such complexes. This issue is especially acute in human cells where 13 separate septin gene products (often produced in multiple forms arising from alternative start codons and differential splicing) are expressed in a tissue-specific manner. Based on sequence alignments and phylogenetic criteria, human septins fall into four distinct groups predictive of their interactions, that is, members of the same group appear to occupy the same position within oligomeric septin protomers, which are "palindromic" (have twofold rotational symmetry about a central homodimeric pair). Many such protomers are capable of end-to-end polymerization, generating filaments. Over a decade ago, a study using X-ray crystallography and single-particle electron microscopy deduced the arrangement within recombinant heterohexamers comprising representatives of three human septin groups-SEPT2, SEPT6, and SEPT7. This model greatly influenced subsequent studies of human and other septin complexes, including how incorporating a septin from a fourth group forms heterooctamers, as first observed in budding yeast. Two recent studies, including one in this issue of Cytoskeleton, provide clear evidence that, in fact, the organization of subunits within human septin heterohexamers and heterooctamers is inverted relative to the original model. These findings are discussed here in a broader context, including possible causes for the initial confusion

    Generalized soldering of ±2\pm 2 helicity states in D=2+1D=2+1

    Full text link
    The direct sum of a couple of Maxwell-Chern-Simons (MCS) gauge theories of opposite helicities ±1\pm 1 does not lead to a Proca theory in D=2+1D=2+1, although both theories share the same spectrum. However, it is known that by adding an interference term between both helicities we can join the complementary pieces together and obtain the physically expected result. A generalized soldering procedure can be defined to generate the missing interference term. Here we show that the same procedure can be applied to join together ±2\pm 2 helicity states in a full off-shell manner. In particular, by using second-order (in derivatives) self-dual models of helicities ±2\pm 2 (spin two analogues of MCS models) the Fierz-Pauli theory is obtained after soldering. Remarkably, if we replace the second-order models by third-order self-dual models (linearized topologically massive gravity) of opposite helicities we end up after soldering exactly with the new massive gravity theory of Bergshoeff, Hohm and Townsend in its linearized approximation.Comment: 12 pages, to appear in Phys. Rev.

    Effects of a nursing care program on functional outcomes in older acute medical in-patients: protocol for a randomized controlled trial

    Get PDF
    Background: Hospitalization often leads to long periods of bed rest and inactivity which is associated with an increase in length of hospital stay, loss of capacity for basic self-care and discharge into a nursing home. Objective: This trial aims to verify if a nursing care program centered on basic self-care and predefined physical activity, improves functional outcomes in older hospitalized patients. Methods: This is a 2-group randomized controlled trial with repeated measures: 182 older acute medical patients will be blindly randomly allocated to the control group (n = 91) or intervention group (n = 91). The intervention will consist of nursing care intervention centered on basic self-care that includes a twice daily walking training, plus privileging pre-established trips to the toilet by walking and all daytime meals seated, off the bed. The main outcome was changes in the number of independent activities of daily living from 2 weeks before admission (baseline) to discharge. Trial registration: ClinicalTrials.gov (Identifier NCT03106064). Results: This intervention has the potential to change the outcomes of the older patient in the acute setting. Conclusion: The loss of independence in self-care is determinant in future health care needs. If our hypothesis is correct and demonstrate that this nursing care program centered on basic self-care for older acute medical patients improves functional outcomes, a change in the paradigmatic organization of hospital care may be justifiable

    A new approach to the Sachs-Wolfe effect

    Full text link
    We present a new approach to the Sachs-Wolfe effect, which is based on the dynamics of photons in a space and time varying gravitational field. We consider the influence of plasma dispersion effects on photon propagation, and establish the limits of validity of the usual results of the standard cosmological approach, for the large scale temperature anisotropies of the cosmic microwave background. New dynamical contributions to the integrated Sachs-Wolfe effect are also discussed.Comment: 5 page

    Quantum equivalence between the self-dual and the Maxwell-Chern-Simons models nonlinearly coupled to U(1) scalar fields

    Full text link
    The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.Comment: 13 pages, no figure

    A new approach to the Sachs-Wolfe effect

    Full text link
    We present a new approach to the Sachs-Wolfe effect, which is based on the dynamics of photons in a space and time varying gravitational field. We consider the influence of plasma dispersion effects on photon propagation, and establish the limits of validity of the usual results of the standard cosmological approach, for the large scale temperature anisotropies of the cosmic microwave background. New dynamical contributions to the integrated Sachs-Wolfe effect are also discussed.Comment: 5 page
    corecore