6,832 research outputs found

    The Burst Spectra of EXO 0748-676 during a Long 2003 XMM-Newton Observation

    Full text link
    Gravitationally redshifted absorption lines from highly ionized iron have been previously identified in the burst spectra of the neutron star in EXO 0748-676. To repeat this detection we obtained a long, nearly 600 ks observation of the source with XMM-Newton in 2003. The spectral features seen in the burst spectra from the initial data are not reproduced in the burst spectra from this new data. In this paper we present the spectra from the 2003 observations and discuss the sensitivity of the absorption structure to changes in the photospheric conditions.Comment: 18 Pages, 3 Figures. Accepted for publication in Ap

    kHz Quasi Periodic Oscillations in Low Mass X-ray Binaries as Probes of General Relativity in the Strong Field Regime

    Get PDF
    We consider the interpretation of a pair of kHz Quasi Periodic Oscillations (QPOs) in the Fourier spectra of two Low Mass X-Ray Binaries, Sco X-1 and 4U1608-52, hosting an old accreting neutron star. The observed frequency difference of these QPOs decreaseas as their frequency increases, contrary to simple beat frequency models, which predict a constant frequency difference. We show that the behaviour of these QPOs is instead well matched in terms of the fundamental frequencies (in the radial and azimuthal directions) for test particle motion in the gravitational field of the neutron star, for reasonable star masses, and nearly independent of the star spin. The radial frequency must be much smaller than the azimuthal one, testifying that kHz QPOs are produced close to the innermost stable orbit. These results are not reproduced through the post--Newtonian (PN) approximation of General Relativity (GR). kHz QPOs from X-ray binaries likely provide an accurate laboratory for strong field GR.Comment: to appear in Physical Review Letters, PRL Latex plus 2 figures in standard PostScript forma

    Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells

    Full text link
    We have shown experimentally that an electric field decreases the energy separation between the two components of a dense spin-polarized exciton gas in a coupled double quantum well, from a maximum splitting of 4\sim 4 meV to zero, at a field of \sim 35 kV/cm. This decrease, due to the field-induced deformation of the exciton wavefunction, is explained by an existing calculation of the change in the spin-dependent exciton-exciton interaction with the electron-hole separation. However, a new theory that considers the modification of screening with that separation is needed to account for the observed dependence on excitation power of the individual energies of the two exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press

    Young stars in the periphery of the Large Magellanic Cloud

    Full text link
    Despite their close proximity, the complex interplay between the two Magellanic Clouds, the Milky Way, and the resulting tidal features, is still poorly understood. Recent studies have shown that the Large Magellanic Cloud (LMC) has a very extended disk strikingly perturbed in its outskirts. We search for recent star formation in the far outskirts of the LMC, out to ~30 degrees from its center. We have collected intermediate-resolution spectra of thirty-one young star candidates in the periphery of the LMC and measured their radial velocity, stellar parameters, distance and age. Our measurements confirm membership to the LMC of six targets, for which the radial velocity and distance values match well those of the Cloud. These objects are all young (10-50 Myr), main-sequence stars projected between 7 and 13 degrees from the center of the parent galaxy. We compare the velocities of our stars with those of a disk model, and find that our stars have low to moderate velocity differences with the disk model predictions, indicating that they were formed in situ. Our study demonstrates that recent star formation occurred in the far periphery of the LMC, where thus far only old objects were known. The spatial configuration of these newly-formed stars appears ring-like with a radius of 12 kpc, and a displacement of 2.6 kpc from the LMC's center. This structure, if real, would be suggestive of a star-formation episode triggered by an off-center collision between the Small Magellanic Cloud and the LMC's disk.Comment: Accepted for publication in MNRA

    Delocalization of Wannier-Stark ladders by phonons: tunneling and stretched polarons

    Full text link
    We study the coherent dynamics of a Holstein polaron in strong electric fields. A detailed analytical and numerical analysis shows that even for small hopping constant and weak electron-phonon interaction, polaron states can become delocalized if a resonance condition develops between the original Wannier-Stark states and the phonon modes, yielding both tunneling and `stretched' polarons. The unusual stretched polarons are characterized by a phonon cloud that {\em trails} the electron, instead of accompanying it. In general, our novel approach allows us to show that the polaron spectrum has a complex nearly-fractal structure, due to the coherent coupling between states in the Cayley tree which describes the relevant Hilbert space. The eigenstates of a finite ladder are analyzed in terms of the observable tunneling and optical properties of the system.Comment: 7 pages, 4 figure

    A new catalog of photometric redshifts in the Hubble Deep Field

    Get PDF
    Using the newly available infrared images of the Hubble Deep Field in the J, H, and K bands and an optimal photometric method, we have refined a technique to estimate the redshifts of 1067 galaxies. A detailed comparison of our results with the spectroscopic redshifts in those cases where the latter are available shows that this technique gives very good results for bright enough objects (AB(8140) < 26.0). From a study of the distribution of residuals (Dz(rms)/(1+z) ~ 0.1 at all redshifts) we conclude that the observed errors are mainly due to cosmic variance. This very important result allows for the assessment of errors in quantities to be directly or indirectly measured from the catalog. We present some of the statistical properties of the ensemble of galaxies in the catalog, and finish by presenting a list of bright high-redshift (z ~ 5) candidates extracted from our catalog, together with recent spectroscopic redshift determinations confirming that two of them are at z=5.34 and z=5.60.Comment: 28 pages, 12PS+4JPEG figures, aaspp style. Accepted for publication in The Astrophysical Journal. The catalog, together with a clickable map of the HDF, Tables 4 and 5 (HTML, LaTeX or ASCII format), and the figures, are available at http://bat.phys.unsw.edu.au/~fsoto/hdfcat.htm

    Discovery of Enhanced Germanium Abundances in Planetary Nebulae with FUSE

    Full text link
    We report the discovery of Ge III λ\lambda1088.46 in the planetary nebulae (PNe) SwSt 1, BD+30o^{\rm o}3639, NGC 3132, and IC 4593, observed with the Far Ultraviolet Spectroscopic Explorer. This is the first astronomical detection of this line and the first measurement of Ge (Z = 32) in PNe. We estimate Ge abundances using S and Fe as reference elements, for a range of assumptions about gas-phase depletions. The results indicate that Ge, which is synthesized in the initial steps of the s-process and therefore can be self-enriched in PNe, is enhanced by factors of > 3-10. The strongest evidence for enrichment is seen for PNe with Wolf-Rayet central stars, which are likely to contain heavily processed material.Comment: 11 pages, 1 figure, accepted for publication in ApJ Letter

    A Far-UV Spectroscopic Analysis of the Central Star of the Planetary Nebula Longmore 1

    Full text link
    We have performed a non-LTE spectroscopic analysis using far-UV and UV data of the central star of the planetary nebula K1-26 (Longmore 1), and found Teff = 120+/-10 kK, logg = 6.7 +0.3/-0.7, and y = 0.10. The temperature is significantly hotter than previous results based on optical line analyses, highlighting the importance of analyzing the spectra of such hot objects at shorter wavelengths. The spectra show metal lines (from, e.g, carbon, oxygen, sulfur, and iron). The signatures of most elements can be fit adequately using solar abundances, confirming the classification of Longmore 1 as a high gravity O(H) object. Adopting a distance of 800 pc, we derive R = 0.04 Rsun, L = 250 Lsun, and M = 0.6 Msun. This places the object on the white dwarf cooling sequence of the evolutionary tracks with an age of ~= 65 kyr.Comment: 14 pages, 4 color figures. Accepted for publication in PAS

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.
    corecore