10,856 research outputs found

    Supersymmetrization of the Radiation Damping

    Full text link
    We construct a supersymmetrized version of the model to the radiation damping \cite{03} introduced by the present authors \cite{ACWF}. We dicuss its symmetries and the corresponding conserved Noether charges. It is shown this supersymmetric version provides a supersymmetric generalization of the Galilei algebra obtained in \cite{ACWF}. We have shown that the supersymmetric action can be splited into dynamically independent external and internal sectors.Comment: 9 page

    Laser pulse analysis

    Get PDF
    Methods are presented for locating threshold points by using laser pulse analysis. It was found that there are errors involved in the determination of each of these quantities, and an attempt was made to separate their effects on the overall range correction. Several series of corrected range measurements for fixed reflectors and satellites were obtained. Residuals were computed by fitting the range measurements to either fixed-reflector distances or short arcs of satellite orbits. Root mean square values of these residuals are presented

    The Mass Function of Field Galaxies at 0.4 < z < 1.2 Derived From the MUNICS K-Selected Sample

    Get PDF
    We derive the number density evolution of massive field galaxies in the redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically calibrated photometric redshifts to determine distances and absolute magnitudes in the rest-frame K-band. To assign mass-to-light ratios, we use two different approaches. First, we use an approach which maximizes the stellar mass for any K-band luminosity at any redshift. We take the mass-to-light ratio of a Simple Stellar Population (SSP) which is as old as the universe at the galaxy's redshift as a likely upper limit. Second, we assign each galaxy a mass-to-light ratio by fitting the galaxy's colours against a grid of composite stellar population models and taking their M/L. We compute the number density of galaxies more massive than 2 x 10^10 h^-2 Msun, 5 x 10^10 h^-2 Msun, and 1 x 10^11 h^-2 Msun, finding that the integrated stellar mass function is roughly constant for the lowest mass limit and that it decreases with redshift by a factor of ~ 3 and by a factor of ~ 6 for the two higher mass limits, respectively. This finding is in qualitative agreement with models of hierarchical galaxy formation, which predict that the number density of ~ M* objects is fairly constant while it decreases faster for more massive systems over the redshift range our data probe.Comment: 6 pages, 2 figures, to appear in the proceedings of the ESO/USM Workshop "The Mass of Galaxies at Low and High Redshift", Venice (Italy), October 24-26, 200

    The Munich Near-Infrared Cluster Survey (MUNICS) - Number density evolution of massive field galaxies to z ~ 1.2 as derived from the K-band selected survey

    Full text link
    We derive the number density evolution of massive field galaxies in the redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically calibrated photometric redshifts to determine distances and absolute magnitudes in the rest-frame K-band. To assign mass-to-light ratios, we use an approach which maximizes the stellar mass for any K-band luminosity at any redshift. We take the mass-to-light ratio, M/L_K, of a Simple Stellar Population (SSP) which is as old as the universe at the galaxy's redshift as a likely upper limit. This is the most extreme case of pure luminosity evolution and in a more realistic model M/L_K will probably decrease faster with redshift due to increased star formation. We compute the number density of galaxies more massive than 2 10^10 h^-2 solar masses, 5 10^10 h^-2 solar masses, and 1 10^11 h^-2 solar masses, finding that the integrated stellar mass function is roughly constant for the lowest mass limit and that it decreases with redshift by a factor of roughly 3 and by a factor of roughly 6 for the two higher mass limits, respectively. This finding is in qualitative agreement with models of hierarchical galaxy formation, which predict that the number density of ~ M* objects is fairly constant while it decreases faster for more massive systems over the redshift range our data probe.Comment: 4 pages, 5 figures, accepted for publication in ApJ Letter

    Large-Scale Structure in the NIR-Selected MUNICS Survey

    Full text link
    The Munich Near-IR Cluster Survey (MUNICS) is a wide-area, medium-deep, photometric survey selected in the K' band. The project's main scientific aims are the identification of galaxy clusters up to redshifts of unity and the selection of a large sample of field early-type galaxies up to z < 1.5 for evolutionary studies. We created a Large Scale Structure catalog, using a new structure finding technique specialized for photometric datasets, that we developed on the basis of a friends-of-friends algorithm. We tested the plausibility of the resulting galaxy group and cluster catalog with the help of Color-Magnitude Diagrams (CMD), as well as a likelihood- and Voronoi-approach.Comment: 4 pages, to appear in "The Evolution of Galaxies III. From Simple Approaches to Self-Consistent Models", proceedings of the 3rd EuroConference on the evolution of galaxies, held in Kiel, Germany, July 16-20, 200

    Dynamical complexity of discrete time regulatory networks

    Full text link
    Genetic regulatory networks are usually modeled by systems of coupled differential equations and by finite state models, better known as logical networks, are also used. In this paper we consider a class of models of regulatory networks which present both discrete and continuous aspects. Our models consist of a network of units, whose states are quantified by a continuous real variable. The state of each unit in the network evolves according to a contractive transformation chosen from a finite collection of possible transformations, according to a rule which depends on the state of the neighboring units. As a first approximation to the complete description of the dynamics of this networks we focus on a global characteristic, the dynamical complexity, related to the proliferation of distinguishable temporal behaviors. In this work we give explicit conditions under which explicit relations between the topological structure of the regulatory network, and the growth rate of the dynamical complexity can be established. We illustrate our results by means of some biologically motivated examples.Comment: 28 pages, 4 figure

    A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro.

    Get PDF
    Qual a importância da fixação biológica do nitrogênio para o Brasil e para o planeta? De modo sucinto, como ocorre o processo de fixação biológica do nitrogênio com a soja? De quanto nitrogênio a cultura da soja precisa para atingir altos rendimentos? Quando e por quanto tempo a soja consegue fixar N2? É necessário colocar uma dose inicial de fertilizante nitrogenado para suprimir sintomas de clorose? A aplicação de fertilizante nitrogenado em outros estádios do crescimento da soja é necessária para a obtenção de altos rendimentos? Por que é necessário inocular a soja em solos de primeiro cultivo? Áreas que estavam sob pastagens, com cana-de-açúcar, ou com outras culturas, há vários anos, podem ser consideradas como primeiro cultivo? Em áreas tradicionalmente cultivadas, vale a pena reinocular? Em uma área de cultivo recente, em que foi feito um trabalho cuidadoso de inoculação, ainda assim vale a pena reinocular? Ganhos de rendimento pela reinoculação também ocorrem em solos sob o sistema de plantio direto? Os incrementos no rendimento obtidos pela reinoculação compensam financeiramente? A demanda elevada da soja por N pode causar um balanço negativo desse nutriente para a próxima cultura? A soja transgênica também se beneficia da fixação biológica do nitrogênio? Como deve ser o inoculante para a soja? Quais bactérias devem estar no inoculante? E o número de células, é importante? Como fazer o cálculo teórico do número de células de Bradyrhizobium por semente? Como saber se o número de células do inoculante é adequado? Quais as vantagens do inoculante turfoso e em que dose ele deve ser usado? É importante usar uma substância adesiva para o inoculante turfoso? Os inoculantes líquidos são tão eficazes quanto os turfosos? Que cuidados tomar na hora da compra do inoculante? Como deve ser feita a inoculação das sementes? Inoculante turfoso e tambor rotatório, sem ou com fungicidas e os micronutrientes; Co e Mo; Inoculante turfoso e máquina de tratamento de sementes; Inoculantes líquidos; Qual o volume de água recomendado no caso de fungicidas e micronutrientes líquidos? No campo, quais os principais fatores limitantes à fixação biológica do N2? Fatores ambientais; Fatores nutricionais; Tratamento de sementes com fungicidas e inseticidas; Como compatibilizar o tratamento de fungicidas com a inoculação? É possível deixar de usar o fungicida nas sementes para evitar prejudicar a fixação biológica do nitrogênio? Se for necessário tratar as sementes com fungicidas, existe alguma alternativa para diminuir os efeitos prejudiciais ao Bradyrhizobium? Superando problemas nutricionais: como realizar a adubação com molibdênio e cobalto sem prejudicar a fixação biológica do N2? Adição de cobalto e molibdênio às sementes; E surgiram problemas pela aplicação de micronutrientes nas sementes? Quais as alternativas para compatibilizar o fornecimento de cobalto e molibdênio com a inoculação das sementes? Quando deve ser feita a inoculação no sulco? Como fazer o cálculo teórico do número de células de Bradyrhizobium no caso de inoculação no sulco? A capacidade de fixação do N2 da soja brasileira é superior à verificada em outros países?bitstream/item/60593/1/Documentos-283.pd
    corecore