1,665 research outputs found

    Calculation of the longitudinal aerodynamic characteristics of wing-flap configurations with externally blown flaps

    Get PDF
    An analytical method for predicting the longitudinal aerodynamic characteristics of externally blown flap configurations is described. Two potential flow models make up the prediction method: a wing and flap lifting-surface model and a turbofan engine wake model. A vortex-lattice lifting-surface method is used to represent the wing and multiple-slotted trailing-edge flaps. The jet wake is represented by a series of closely spaced vortex rings normal to a centerline which is free to move to conform to the local flow field. The two potential models are combined in an iterative fashion to predict the jet wake interference effects on a typical EBF configuration. Comparisons of measured and predicted span-load distributions, individual surface forces, forces and moments on the complete configuration, and flow fields are included

    Predicted and measured performance of two full-scale ducted propellers

    Get PDF
    Predicted and measured performance of two full- scale ducted propellers at angle of attack - analytical model developmen

    Measured and calculated steady aerodynamic loads on a large-scale upper-surface blown model

    Get PDF
    Static aerodynamic loads measurements from wind tunnel tests of a full-scale upper surface blown jet flap configuration are presented. The measured loads are compared with calculations using a method for predicting longitudinal aerodynamic characteristics of upper surface blown jet flap configurations

    Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    Get PDF
    An engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blowing (USB) was developed. Potential flow models were incorporated into the prediction method: a wing and flap lifting surface model and a jet wake model. The wing-flap model used a vortex-lattice to represent the wing and flaps. The wing had an arbitrary planform and camber and twist, and the flap system was made up of a Coanda flap and other flap segments of arbitrary size. The jet wake model consisted of a series of closely spaced rectangular vortex rings. The wake was positioned such that it was tangent to the upper surface of the wing and flap between the exhaust nozzle and the flap trailing edge. It was specified such that the mass, momentum, and spreading rates were similar to actual USB jet wakes. Comparisons of measured and predicted pressure distributions, span load distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are included. A wide range of thrust coefficients and flap deflection angles were considered at angles of attack up to the onset of stall

    Theoretical Study of Ducted Fan Performance

    Get PDF
    Existing computer program improved capability for predicting performance of ducted fan in uniform axial flo

    Computer programs to predict induced effects of jets exhausting into a crossflow

    Get PDF
    A user's manual for two computer programs was developed to predict the induced effects of jets exhausting into a crossflow. Program JETPLT predicts pressures induced on an infinite flat plate by a jet exhausting at angles to the plate and Program JETBOD, in conjunction with a panel code, predicts pressures induced on a body of revolution by a jet exhausting normal to the surface. Both codes use a potential model of the jet and adjacent surface with empirical corrections for the viscous or nonpotential effects. This program manual contains a description of the use of both programs, instructions for preparation of input, descriptions of the output, limitations of the codes, and sample cases. In addition, procedures to extend both codes to include additional empirical correlations are described

    Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    Get PDF
    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes

    Calculation of aerodynamic characteristics of STOL aircraft

    Get PDF
    Method predicts lift and pitching moment characteristics of STOL aircraft with externally-blown, jet-augmented wing-flap combinations using potential-flow approach which involves combination of two flow models. Method can accommodate multiple engines per wing panel and part-span flaps

    Computation of aerodynamic interference between lifting surfaces and lift- and cruise-fans

    Get PDF
    Sequence of three computer programs predicts aerodynamic interference on lifting surfaces of transport-type aircraft which are equipped with lift and cruise fans; for example, high-bypass-ratio engine and wing-pylon tail configuration or fuselage-mounted lift-fan and wing-tail configuration

    A computer program to calculate the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    Get PDF
    A user's manual is presented for a computer program in which a vortex-lattice lifting-surface method is used to model the wing and multiple flaps. The engine wake model consists of a series of closely spaced vortex rings with rectangular cross sections. The jet wake is positioned such that the lower boundary of the jet is tangent to the wing and flap upper surfaces. The two potential flow models are used to calculate the wing-flap loading distribution including the influence of the wakes from up to two engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The results include total configuration forces and moments, individual lifting-surface load distributions, pressure distributions, flap hinge moments, and flow field calculation at arbitrary field points. The use of the program, preparation of input, the output, program listing, and sample cases are described
    corecore