2,116 research outputs found
Postpartum Quiet Time Effects on Breastfeeding, Satisfaction, & Interruptions to Couplets
https://digitalcommons.psjhealth.org/summit_all/1061/thumbnail.jp
The Viscous Nonlinear Dynamics of Twist and Writhe
Exploiting the "natural" frame of space curves, we formulate an intrinsic
dynamics of twisted elastic filaments in viscous fluids. A pair of coupled
nonlinear equations describing the temporal evolution of the filament's complex
curvature and twist density embodies the dynamic interplay of twist and writhe.
These are used to illustrate a novel nonlinear phenomenon: ``geometric
untwisting" of open filaments, whereby twisting strains relax through a
transient writhing instability without performing axial rotation. This may
explain certain experimentally observed motions of fibers of the bacterium B.
subtilis [N.H. Mendelson, et al., J. Bacteriol. 177, 7060 (1995)].Comment: 9 pages, 4 figure
Unstable Attractors: Existence and Robustness in Networks of Oscillators With Delayed Pulse Coupling
We consider unstable attractors; Milnor attractors such that, for some
neighbourhood of , almost all initial conditions leave . Previous
research strongly suggests that unstable attractors exist and even occur
robustly (i.e. for open sets of parameter values) in a system modelling
biological phenomena, namely in globally coupled oscillators with delayed pulse
interactions.
In the first part of this paper we give a rigorous definition of unstable
attractors for general dynamical systems. We classify unstable attractors into
two types, depending on whether or not there is a neighbourhood of the
attractor that intersects the basin in a set of positive measure. We give
examples of both types of unstable attractor; these examples have
non-invertible dynamics that collapse certain open sets onto stable manifolds
of saddle orbits.
In the second part we give the first rigorous demonstration of existence and
robust occurrence of unstable attractors in a network of oscillators with
delayed pulse coupling. Although such systems are technically hybrid systems of
delay differential equations with discontinuous `firing' events, we show that
their dynamics reduces to a finite dimensional hybrid system system after a
finite time and hence we can discuss Milnor attractors for this reduced finite
dimensional system. We prove that for an open set of phase resetting functions
there are saddle periodic orbits that are unstable attractors.Comment: 29 pages, 8 figures,submitted to Nonlinearit
Molecular elasticity and the geometric phase
We present a method for solving the Worm Like Chain (WLC) model for twisting
semiflexible polymers to any desired accuracy. We show that the WLC free energy
is a periodic function of the applied twist with period 4 pi. We develop an
analogy between WLC elasticity and the geometric phase of a spin half system.
These analogies are used to predict elastic properties of twist-storing
polymers. We graphically display the elastic response of a single molecule to
an applied torque. This study is relevant to mechanical properties of
biopolymers like DNA.Comment: five pages, one figure, revtex, revised in the light of referee's
comments, to appear in PR
Very Large and Reversible Stark-Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride
© 2019 American Physical Society. Combining solid-state single-photon emitters (SPEs) with nanophotonic platforms is a key goal in integrated quantum photonics. In order to realize functionality in potentially scalable elements, suitable SPEs have to be bright, stable, and widely tunable at room temperature. In this work, we show that selected SPEs embedded in a few-layer hexagonal boron nitride (h-BN) meet these demands. In order to show the wide tunability of these SPEs we employ an atomic force microscope (AFM) with a conductive tip to apply an electrostatic field to individual h-BN emitters sandwiched between the tip and an indium-tin-oxide-coated glass slide. A very large and reversible Stark shift of (5.5±0.3)nm at a zero-field wavelength of 670 nm is induced by applying just 20 V, which exceeds the typical resonance linewidths of nanodielectric and even nanoplasmonic resonators. Our results help to further understand the physical origin of SPEs in h-BN as well as for practical quantum photonic applications where wide spectral tuning and on/off resonance switching are required
A Paraconsistent Higher Order Logic
Classical logic predicts that everything (thus nothing useful at all) follows
from inconsistency. A paraconsistent logic is a logic where an inconsistency
does not lead to such an explosion, and since in practice consistency is
difficult to achieve there are many potential applications of paraconsistent
logics in knowledge-based systems, logical semantics of natural language, etc.
Higher order logics have the advantages of being expressive and with several
automated theorem provers available. Also the type system can be helpful. We
present a concise description of a paraconsistent higher order logic with
countable infinite indeterminacy, where each basic formula can get its own
indeterminate truth value (or as we prefer: truth code). The meaning of the
logical operators is new and rather different from traditional many-valued
logics as well as from logics based on bilattices. The adequacy of the logic is
examined by a case study in the domain of medicine. Thus we try to build a
bridge between the HOL and MVL communities. A sequent calculus is proposed
based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker,
Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte
COVID-19 vaccines – less obfuscation, more transparency and action
Letter by Venter et al. on editorial by Schoub (Dial down the rhetoric over COVID-19 vaccines. S Afr Med J 2021;111(6):522-523. https://doi.org/10.7196/SAMJ.2021.v111i6.15740)
Recommended from our members
Effects of Cryogenic Aging on a Rapid Prototyped (RP) Polymer
Little research has been done on the post-processing (aging) of rapid prototyped (RP)
polymers at temperatures below 123K (–238˚F). Test specimens of RP thermosetting resin
(DSM-Somos 8110) were fabricated and cryogenically aged from 10-25 hours. The tensile
strength and impact toughness were measured. This work will study the effect of cryogenic
aging on yield strength of Somos 8110. This paper will also discuss our interpretation of the data
based on fractography.The work was funded by an NSF Grant under Research Experiences for Undergraduates
(REU).Mechanical Engineerin
- …