5 research outputs found

    Effect of DNA damage and oxidative stress cochlear neuroepithelial structures degeneration after cisplatin poisening and during aging.

    No full text
    Dans nos sociétés modernes, la presbyacousie, perte de l'audition liée au vieillissement, prend une place de plus en plus importante. Outre le vieillissement de la population, la prévalence de la presbyacousie est accentuée par l'exposition à des bruits toujours plus forts (concerts, baladeurs, environnement de travail, ...) et la prise de médicaments ototoxiques (cisplatine, aminoglycosides, ...). À ce jour, le lien entre l'endommagement de l'ADN, le stress oxydant et l'inflammation avec l'apparition précoce de certaines maladies liées au vieillissement (Alzheimer, démence, Parkinson, …) a été démontré. Cependant, il n'existe aucune donnée concernant le rôle des dommages de l'ADN dans la dégénérescence des cellules cochléaires et trop peu d'études témoignent de l'existence d'un stress oxydant dans la presbyacousie.Le premier objet de ce travail a donc été d'élucider le rôle des dommages de l'ADN dans la dégénérescence des cellules cochléaires. Pour ce faire, nous avons utilisé des approches de biologie moléculaire et cellulaire pour identifier des voies de signalisation associées aux lésions de l'ADN dans des explants cochléaires issus de souris âgées de 3 jours traités au cisplatine (CDDP). Cet antinéoplasique tire sa cytotoxicité de sa capacité à causer directement des dommages dans l'ADN et est connu pour ses effets nocifs sur l'audition en induisant la dégénérescence des cellules cochléaires. Enfin, nous avons étudié l'implication de p53, un des effecteurs clés de signalisation des dommages de l'ADN, in vivo en traitant avec le CDDP des souris dont le gène codant pour ce facteur de transcription a été invalidé. Nos résultats montrent que le CDDP induit des cassures double brin dans l'ADN des cellules ciliées qui sont à l'origine de l'activation de la voie ATM/DNA¬PK-Chk2-p53, de la formation de foyers βH2AX et 53BP1 et, in fine, de la mort de ces cellules par apoptose. Les cellules ciliées internes, plus résistantes au CDDP que les cellules ciliées externes, présentent une signalisation moins intense et un nombre inférieur de cassures double brin, un phénomène qui pourrait expliquer leur plus faible sensibilité. Nous avons également montré que l'absence de p53 in vivo prévient les pertes d'audition et la dégénérescence des cellules ciliées externes après injection intrapéritonéale de CDDP. Le second objectif a porté sur l'étude des effets délétères du vieillissement sur l'audition et les mécanismes moléculaires associés à cette pathologie. Pour ce faire, nous avons choisi les souris SAMP8 (senescence accelerated mice prone 8), un modèle bien établi de sénescence précoce et des maladies liées au vieillissement. Nous avons combiné des approches fonctionnelles, morphologiques, moléculaires et cellulaires pour phénotyper ces souris et identifier l'origine de l'atteinte de leur audition au cours du vieillissement. L'étude des souris SAMP8 nous a permis de montrer qu'elles sont un excellent modèle de presbyacousie mixte (atteinte de la strie vasculaire, de l'organe de Corti et du ganglion spiral), résumant la pathologie humaine. La dégénérescence des structures cochléaires que nous avons observée chez ces souris provient d'une profonde dysfonction mitochondriale, de l'augmentation du stress oxydant et des processus inflammatoires, d'un stress autophagique et de l'endommagement de l'ADN. Les mécanismes moléculaires aboutissant à la perte des cellules cochléaires constituent autant de cibles thérapeutiques à explorer dans l'avenir afin de tenter de prévenir les troubles de l'audition imputables à l'exposition au bruit ou aux médicaments ototoxiques et au vieillissement.Our modern society is confronted with a dramatic increase in the number of patients suffering from presbycusis or age related hearing loss. Besides aging, presbycusis prevalence increases with exposition to loud noise (concerts, Walkman, work environment …) and ototoxic drugs (cisplatin, aminoglycosides …). It was reported that the early onset of some aging related diseases (Alzheimer, dementia, Parkinson …) are linked mechanistically to DNA damage, oxidative stress and inflammation. However, the role of DNA damages in cochlear cells degeneration is totally unknown and only few studies have investigated the implication of oxidative stress in presbycusis.The first goal of this study consisted in clarifying the role of DNA damage in cochlear cell degeneration. For this purpose, we used molecular and cellular biology approaches to identify the activation of DNA damage response pathways in cisplatin (CDDP) treated 3 days postnatal mouse cochlear explants in culture. Indeed, the cytotoxicity of CDDP arises from its capacity to directly damage DNA. It is also well known that one of the major dose limiting side effects of CDDP is its ototoxicity. Finally, we investigated the role of p53, a key effector of the DNA damage response pathway, in vivo by treating p53 knockout mice with CDDP. Our results show that CDDP induces double strand breaks leading to the activation of ATM-/DNA PK¬ Chk2 p53 pathway, βH2AX and 53BP1 foci formation and, in fine, apoptotic cell death. Inner hair cells, which are more resistant to CDDP treatment than outer hair cells, show a less intense signaling and fewer double strand breaks. This phenomenon could explain their weaker sensitivity to CDDP treatment. In vivo, p53 deletion prevents hearing loss and outer hair cells degeneration induced bay intraperitoneal injection of CDDP.The second goal consisted in studying the deleterious effects of aging on hearing and the molecular mechanisms involved in this pathology. Here, we studied the mechanism of presbycusis using the senescence-accelerated mouse prone 8 (SAMP8) which is a useful model to probe the effects of aging on biological processes. Based on complementary approaches combining functional, morphological, biochemistry, cellular and molecular biology, we found that the SAMP8 strain displays premature hearing loss and cochlear degeneration recapitulating the processes observed in human presbycusis (i.e. strial, sensory and neural degeneration). The molecular mechanisms associated with premature presbycusis in SAMP8 mice involve oxidative stress, mitochondrial dysfunction, chronic inflammation, autophagic stress and DNA damages. Molecular mechanisms leading to cochlear cells loss represent therapeutic targets of interest to explore in the future in order to prevent hearing impairments due to loud sound or ototoxic drugs exposure and due to aging

    Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy

    No full text
    Abstract Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin‐induced ototoxicity remains unclear, and hearing preservation during cisplatin‐based chemotherapy in patients is lacking. We found activation of the ATM‐Chk2‐p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin‐induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient‐derived triple‐negative breast cancer protected auditory function, without compromising the anti‐tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin‐based chemotherapy

    Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse cochlea

    No full text
    Contact : [email protected] audienceAIMS: In our aging society, age-related hearing loss (ARHL) or presbycusis is increasingly important. Here, we study the mechanism of ARHL using the senescence-accelerated mouse prone 8 (SAMP8) which is a useful model to probe the effects of aging on biological processes. RESULTS: We found that the SAMP8 strain displays premature hearing loss and cochlear degeneration recapitulating the processes observed in human presbycusis (i.e., strial, sensory, and neural degeneration). The molecular mechanisms associated with premature ARHL in SAMP8 mice involve oxidative stress, altered levels of antioxidant enzymes, and decreased activity of Complexes I, II, and IV, which in turn lead to chronic inflammation and triggering of apoptotic cell death pathways. In addition, spiral ganglion neurons (SGNs) also undergo autophagic stress and accumulated lipofuscin. INNOVATION and CONCLUSION: Our results provide evidence that targeting oxidative stress, chronic inflammation, or apoptotic pathways may have therapeutic potential. Modulation of autophagy may be another strategy. The fact that autophagic stress and protein aggregation occurred specifically in SGNs also offers promising perspectives for the prevention of neural presbycusis

    Aperçu de la diversité des modèles animaux dédiés à l’étude du vieillissement

    No full text
    Le haut degré de conservation des voies de signalisation impliquées dans la régulation de la longévité justifie l’utilisation d’organismes aussi variés que les nématodes, les souris, ou encore les lémuriens pour l’étude du vieillissement humain. La complémentarité de ces modèles permet d’aborder différentes questions : celles des interactions entre les facteurs génétiques et environnementau, de la conservation des fonctions auditives, de la lutte contre la sénescence des cellules souches neurales ou encore de l’exploration des aptitudes cérébrales depuis l’expression génique jusqu’aux comportements cognitifs et sociaux. Tout en différenciant les aspects physiologiques et pathologiques des processus liés à l’âge, nous soulignerons l’intérêt des technologies de pointe pour une meilleure compréhension des mécanismes régissant le vieillissement

    ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation

    No full text
    In our aging society, age-related hearing loss (ARHL) has become a major socioeconomic issue. Reactive oxygen species (ROS)may be one of the main causal factors of age-related cochlear cell degeneration. We examined whether ROS-induced DNAdamage response drives cochlear cell senescence and contributes to ARHL from the cellular up to the system level. Our resultsrevealed that sublethal concentrations of hydrogen peroxide (H2O2) exposure initiated a DNA damage response illustrated byincreasedγH2AX and 53BP1 expression and foci formation mainly in sensory hair cells, together with increased levels of p-Chk2 and p53. Interestingly, postmitotic cochlear cells exposed to H2O2displayed key hallmarks of senescent cells, includingdramatically increased levels of p21, p38, and p-p38 expression, concomitant with decreased p19 and BubR1 expression andpositive senescence-associatedβ-galactosidase labeling. Importantly, the synthetic superoxide dismutase/catalase mimetic EUK-207 attenuated H2O2-induced DNA damage and senescence phenotypes in cochlear cells in vitro. Furthermore, systemic ad-ministration of EUK-207 reduced age-related loss of hearing and hair cell degeneration in senescence-accelerated mouse-prone 8(SAMP8) mice. Altogether, these findings highlight that ROS-induced DNA damage responses drive cochlear cell senescenceand contribute to accelerated ARHL. EUK-207 and likely other antioxidants with similar mechanisms of action could potentiallypostpone cochlear aging and prevent ARHL in humans
    corecore