2,984 research outputs found
Magnification as a Tool in Weak Lensing
Weak lensing surveys exploit measurements of galaxy ellipticities. These
measurements are subject to errors which degrade the cosmological information
that can be extracted from the surveys. Here we propose a way of using the
galaxy data themselves to calibrate the measurement errors. In particular, the
cosmic shear field, which causes the galaxies to appear elliptical, also
changes their sizes and fluxes. Information about the sizes and fluxes of the
galaxies can be added to the shape information to obtain more robust
information about the cosmic shear field. The net result will be tighter
constraints on cosmological parameters such as those which describe dark
energy.Comment: 4 pages, 2 figure
Surface and Bulk Structural Properties of Single Crystalline Sr3Ru2O7
We report temperature and thermal-cycling dependence of surface and bulk
structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface
and bulk structures were investigated using low-energy electron diffraction
(LEED) and single-crystal X-ray diffraction (XRD) techniques, respectively.
Single-crystal XRD data is in good agreement with previous reports for the bulk
structure with RuO6 octahedral rotation, which increases with decreasing
temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED
results reveal that the octahedra at the surface are much more distorted with a
higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt
((4.5\pm2.5) degrees at 300 K and (2.5\pm1.7) degrees at 80 K). While XRD data
confirms temperature dependence of the unit cell height/width ratio (i.e.
lattice parameter c divided by the average of parameters a and b) found in a
prior neutron powder diffraction investigation, both bulk and surface
structures display little change with thermal cycles between 300 and 80 K.Comment: 25 pages, 5 figures, 5 tables, to appear in Physical Review
Gravitational Lensing as Signal and Noise in Lyman-alpha Forest Measurements
In Lyman-alpha forest measurements it is generally assumed that quasars are
mere background light sources which are uncorrelated with the forest.
Gravitational lensing of the quasars violates this assumption. This effect
leads to a measurement bias, but more interestingly it provides a valuable
signal. The lensing signal can be extracted by correlating quasar magnitudes
with the flux power spectrum and with the flux decrement. These correlations
will be challenging to measure but their detection provides a direct measure of
how features in the Lyman-alpha forest trace the underlying mass density field.
Observing them will test the fundamental hypothesis that fluctuations in the
forest are predominantly driven by fluctuations in mass, rather than in the
ionizing background, helium reionization or winds. We discuss ways to
disentangle the lensing signal from other sources of such correlations,
including dust, continuum and background residuals. The lensing-induced
measurement bias arises from sample selection: one preferentially collects
spectra of magnified quasars which are behind overdense regions. This
measurement bias is ~0.1-1% for the flux power spectrum, optical depth and the
flux probability distribution. Since the effect is systematic, quantities such
as the amplitude of the flux power spectrum averaged across scales should be
interpreted with care.Comment: 22 pages, 8 figures; v2: references added, discussion expanded,
matches PRD accepted versio
Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph
From observations collected with the ESPaDOnS spectropolarimeter at the
Canada-France-Hawaii Telescope, we report the detection of Zeeman signatures on
the low-mass classical TTauri star (cTTS) V2247Oph. Profile distortions and
circular polarisation signatures detected in photospheric lines can be
interpreted as caused by cool spots and magnetic regions at the surface of the
star. The large-scale field is of moderate strength and highly complex;
moreover, both the spot distribution and the magnetic field show significant
variability on a timescale of only one week, as a likely result of strong
differential rotation. Both properties make V2247Oph very different from the
(more massive) prototypical cTTS BPTau; we speculate that this difference
reflects the lower mass of V2247Oph.
During our observations, V2247Oph was in a low-accretion state, with emission
lines showing only weak levels of circular polarisation; we nevertheless find
that excess emission apparently concentrates in a mid-latitude region of strong
radial field, suggesting that it is the footpoint of an accretion funnel.
The weaker and more complex field that we report on V2247Oph may share
similarities with those of very-low-mass late-M dwarfs and potentially explain
why low-mass cTTSs rotate on average faster than intermediate mass ones. These
surprising results need confirmation from new independent data sets on V2247Oph
and other similar low-mass cTTSs.Comment: MNRAS (in press) - 12 pages, 9 figure
Effect of kinetic resonances on the stability of Resistive Wall Mode in Reversed Field Pinch
The kinetic effects, due to the mode resonance with thermal particle drift
motions in the reversed field pinch (RFP) plasmas, are numerically investigated
for the stability of the resistive wall mode, using a non-perturbative
MHD-kinetic hybrid formulation. The kinetic effects are generally found too
weak to substantially change the mode growth rate, or the stability margin,
re-enforcing the fact that the ideal MHD model is rather adequate for
describing the RWM physics in RFP experiments.Comment: Submitted to: Plasma Phys. Control. Fusio
Liquid transport in scale space
International audienceWhen a liquid stream is injected into a gaseous atmosphere, it destabilizes and continuously passes through different states characterized by different morphologies. Throughout this process, the flow dynamics may be different depending on the region of the flow and the scales of the involved liquid structures. Exploring this multi-scale, multi-dimensional phenomenon requires some new theoretical tools, some of which need yet to be elaborated. Here, a new analytical framework is proposed on the basis of two-point statistical equations of the liquid volume fraction. This tool, which originates from single phase turbulence, allows us notably to decompose the fluxes of liquid in flow–position space and scale space. Direct numerical simulations of liquid–gas turbulence decaying in a triply periodic domain are then used to characterize the time and scale evolution of the liquid volume fraction. It is emphasized that two-point statistics of the liquid volume fraction depend explicitly on the geometrical properties of the liquid–gas interface and in particular its surface density. The stretch rate of the liquid–gas interface is further shown to be the equivalent for the liquid volume fraction (a non-diffusive scalar) of the scalar dissipation rate. Finally, a decomposition of the transport of liquid in scale space highlights that non-local interactions between non-adjacent scales play a significant role
EBV-associated mononucleosis does not induce long-term global deficit in T-cell responsiveness to IL-15
It has been reported that infectious mononucleosis (IM)-symptomatic primary Epstein-Barr virus infection produces a global down-regulation of interleukin-15 receptor-\u3b1 (IL-15R\u3b1) on T cells and natural killer cells associated with a defective IL-15 responsiveness that lasts for many years after the disease episode. In contrast with these results, our data indicate that, in the T-cell compartment derived from remote IM subjects, there is no quantitative or qualitative defect in the expression of the IL-15R\u3b1 chain and no deficit in T-cell responsiveness to IL-15. We observed efficient signal transduction, survival, and proliferation even in response to low IL-15 concentrations. These data are relevant and shed new light on the immune long-term response in IM subjects because they contradict the hypothesis that defects in Epstein-Barr virus-host immune balance may be correlated with a long-lasting global deficit in T-cell responsiveness to IL-15. \ua9 2009 by The American Society of Hematology
Assessing the UK policies for broadband adoption
Broadband technology has been introduced to the business community and the public as a rapid way of exploiting the Internet. The benefits of its use (fast reliable connections, and always on) have been widely realised and broadband diffusion is one of the items at the top of the agenda for technology related polices of governments worldwide. In this paper an examination of the impact of the UK government’s polices upon broadband adoption is undertaken. Based on institutional theory a consideration of the manipulation of supply push and demand pull forces in the diffusion of broadband is offered. Using primary and secondary data sources, an analysis of the specific institutional actions related to IT diffusion as pursued by the UK government in the case of broadband is provided. Bringing the time dimension into consideration it is revealed that the UK government has shifted its attention from supply push-only strategies to more interventional ones where the demand pull forces are also mobilised. It is believed that this research will assist in the extraction of the “success factors” in government intervention that support the diffusion of technology with a view to render favourable results if applied to other national settings
Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory
Context. Debris discs are thought to be formed through the collisional
grinding of planetesimals, and can be considered as the outcome of planet
formation. Understanding the properties of gas and dust in debris discs can
help us to comprehend the architecture of extrasolar planetary systems.
Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have
provided a valuable dataset for the study of debris discs gas and dust
composition. This paper is part of a series of papers devoted to the study of
Herschel PACS observations of young stellar associations.
Aims. This work aims at studying the properties of discs in the Beta Pictoris
Moving Group (BPMG) through far-IR PACS observations of dust and gas.
Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100
and 160 microns of 19 BPMG members, together with spectroscopic observations of
four of them. Spectroscopic observations were centred at 63.18 microns and 157
microns, aiming to detect [OI] and [CII] emission. We incorporated the new
far-IR observations in the SED of BPMG members and fitted modified blackbody
models to better characterise the dust content.
Results. We have detected far-IR excess emission toward nine BPMG members,
including the first detection of an IR excess toward HD 29391.The star HD
172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding
the short list of debris discs with a gas detection. No debris disc in BPMG is
detected in both [OI] and [CII]. The discs show dust temperatures in the range
55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii
from blackbody models in the range 3 to 82 AU. All the objects with a gas
detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table
- …