7 research outputs found
Elucidating sources and roles of Granzymes A and B during bacterial infection and sepsis
During bacterial sepsis, proinflammatory cytokines contribute to multiorgan failure and death in a pro- cess regulated in part by cytolytic cell granzymes. When challenged with a sublethal dose of the identi- fied mouse pathogen Brucella microti, wild-type (WT) and granzyme A (gzmA)/ mice eliminate the organism from liver and spleen in 2 or 3 weeks, whereas the bacteria persist in mice lacking perforin or granzyme B as well as in mice depleted of Tc cells. In comparison, after a fatal challenge, only gzmA/ mice exhibit increased survival, which correlated with reduced proinflammatory cytokines. Depletion of natural killer (NK) cells protects WT mice from sepsis without influencing bacterial clearance and the transfer of WT, but not gzmA/ NK, cells into gzmA/ recipients restores the susceptibility to sepsis. Therefore, infection-related pathology, but not bacterial clearance, appears to require gzmA, suggesting the protease may be a therapeutic target for the prevention of bacterial sepsis without affecting immune control of the pathogen
Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in Vivo
The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated. Although both types of nanoparticles bound similar amounts of proteins in vitro, the differences in the protein corona composition correlated to the nanoparticles biodistribution in vivo. Interestingly, in vitro degradation studies demonstrated faster degradation for nanoparticles functionalized with glucose, whereas the in vivo results were opposite with accelerated biodegradation and clearance of the nanoparticles functionalized with poly(ethylene glycol). Therefore, the variation in the degradation rate observed in vivo could be related not only to the molecules attached to the surface, but also with the associated protein corona, as the key role of the adsorbed proteins on the magnetic core degradation has been demonstrated in vitro
Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria
3-Hydroxy-3-methylglutaric aciduria is a rare human autosomal recessive disorder caused by deficiency of 3-hydroxy-3-methylglutaryl CoA lyase (HL). This mitochondrial enzyme catalyzes the common final step of leucine degradation and ketogenesis. Acute symptoms include vomiting, seizures and lethargy, accompanied by metabolic acidosis and hypoketotic hypoglycaemia. Such organs as the liver, brain, pancreas, and heart can also be involved. However, the pathophysiology of this disease is only partially understood. We measured mRNA levels, protein expression and enzyme activity of human HMG-CoA lyase from liver, kidney, pancreas, testis, heart, skeletal muscle, and brain. Surprisingly, the pancreas is, after the liver, the tissue with most HL activity. However, in heart and adult brain, HL activity was not detected in the mitochondrial fraction. These findings contribute to our understanding of the enzyme function and the consequences of its deficiency and suggest the need for assessment of pancreatic damage in these patients