8 research outputs found

    RXRA DT448/9PP generates a dominant active variant capable of inducing maturation in acute myeloid leukemia cells.

    Get PDF
    RARA and RXRA contribute to myeloid maturation in both mice and humans, and deletion of Rxra and Rxrb augments leukemic growth in mice. While defining the domains of RXRA that are required for anti-leukemic effects in murine KMT2A-MLLT3 leukemia cells, we unexpectedly identified RXRA DT448/9PP as a constitutively active variant capable of inducing maturation and loss of their proliferative phenotype. RXRA DT448/9PP was associated with ligand-independent activity in reporter assays, with enhanced co-activator interactions, reduced engraftment in vivo, and activation of myeloid maturation transcriptional signatures that overlapped with those of cells treated with the potent RXRA agonist bexarotene, suggestive of constitutive activity that leads to leukemic maturation. Phenotypes of RXRA DT448/9PP appear to differ from those of two other RXRA mutations with forms of constitutive activity (F318A and S427F), in that DT448/9PP activity was resistant to mutations at critical ligand-interacting amino acids (R316A/L326A) and was resistant to pharmacological antagonists, suggesting it may be ligand-independent. These data provide further evidence that activated retinoid X receptors can regulate myeloid maturation and provide a novel constitutively active variant that may be germane for broader studies of retinoid X receptors in other settings.This work was supported by National Institutes of Health grant R01 HL128447 (JSW) , by the Siteman Investment Program (JSW) , the Washington University SPORE DRP (JSW and MAF) , the Children's Discovery Institute (JSW) , the Alex's Lemonade Stand Foundation Young Investigator Award (MAF) , the National Institutes of Health 5K12HD07622408 (MAF) , and grants from the Spanish Ministerio de Ciencia e Innovacion (MCI) (SAF2017-90604-REDT-NurCaMeIn, RTI2018-095928-BI00) (MR).S

    RXRs control serous macrophage neonatal expansion and identity and contribute to ovarian cancer progression

    Get PDF
    Tissue-resident macrophages (TRMs) populate all tissues and play key roles in homeostasis, immunity and repair. TRMs express a molecular program that is mostly shaped by tissue cues. However, TRM identity and the mechanisms that maintain TRMs in tissues remain poorly understood. We recently found that serous-cavity TRMs (LPMs) are highly enriched in RXR transcripts and RXR-response elements. Here, we show that RXRs control mouse serous-macrophage identity by regulating chromatin accessibility and the transcriptional regulation of canonical macrophage genes. RXR deficiency impairs neonatal expansion of the LPM pool and reduces the survival of adult LPMs through excess lipid accumulation. We also find that peritoneal LPMs infiltrate early ovarian tumours and that RXR deletion diminishes LPM accumulation in tumours and strongly reduces ovarian tumour progression in mice. Our study reveals that RXR signalling controls the maintenance of the serous macrophage pool and that targeting peritoneal LPMs may improve ovarian cancer outcomes.This work was supported by a HFSP fellowship to M.C-A. (LT000110/2015-L/1), grants from the Spanish Ministerio de Ciencia e Innovación (MCI) (SAF2015-64287R, SAF2017-90604-REDT-NurCaMein, RTI2018-095928-B100), La Marató de TV3 Foundation (201605-32) and Comunidad de Madrid (MOIR-B2017/BMD-3684) to M.R, and the Formación de Profesorado Universitario (FPU17/01731) programme (MCI) to J.P. The CNIC is supported by the MCI and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Retinoid X receptor promotes hematopoietic stem cell fitness and quiescence and preserves hematopoietic homeostasis.

    Get PDF
    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain hematopoietic fitness throughout life. In steady-state conditions, HSC exhaustion is prevented by the maintenance of most HSCs in a quiescent state, with cells entering the cell cycle only occasionally. HSC quiescence is regulated by retinoid and fatty-acid ligands of transcriptional factors of the nuclear retinoid X receptor (RXR) family. Here, we show that dual deficiency for hematopoietic RXRa and RXRb induces HSC exhaustion, myeloid cell/megakaryocyte differentiation, and myeloproliferative-like disease. RXRa and RXRb maintain HSC quiescence, survival, and chromatin compaction; moreover, transcriptome changes in RXRa;RXRb-deficient HSCs include premature acquisition of an aging-like HSC signature, MYC pathway upregulation, and RNA intron retention. Fitness loss and associated RNA transcriptome and splicing alterations in RXRa;RXRb-deficient HSCs are prevented by Myc haploinsufficiency. Our study reveals the critical importance of RXRs for the maintenance of HSC fitness and their protection from premature aging.We thank the members of the J.A.C. and M.R. laboratories for extensive discussions and critiques of the manuscript. We thank Daniel Metzger (Université de Strasbourg, France) for Rxrbf/f 418 mice, Juan Carlos Zúñiga-Pflücker (Sunnybrook Health Sciences Centre, Canada) for OP9-NL1 cells, Daniel Jiménez-Carretero (CNIC) for t-SNE analysis, the CRG (Barcelona, Spain) Genomics Unit for ATACseq sequencing, and S. Bartlett (CNIC) for editorial assistance. We also thank the staff of the CNIC Cellomics and Animal facilities for technical support. This study was supported by grants from the Spanish Ministerio de Ciencia e Innovación (MICIN) (SAF2017-90604-REDT-NurCaMein, RTI2018- 095928-B100, and PID2021-122552OB-I00), La Marató de TV3 Foundation (201605-32), and the Comunidad de Madrid (MOIR-B2017/BMD-3684) to M.R and from the Formación de Profesorado Universitario (FPU17/01731) program (MICIN) to J.P. The project also received funding from the US National Institutes of Health (R01 DK124115, P01 HL158688, R01 HL147536, R01 CA237016 and U54 DK126108 to J.A.C). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN), and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033).S

    Retinoid X receptor promotes hematopoietic stem cell fitness and quiescence and preserves hematopoietic homeostasis

    Get PDF
    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain hematopoietic fitness throughout life. In steady-state conditions, HSC exhaustion is prevented by the maintenance of most HSCs in a quiescent state, with cells entering the cell cycle only occasionally. HSC quiescence is regulated by retinoid and fatty-acid ligands of transcriptional factors of the nuclear retinoid X receptor (RXR) family. Herein, we show that dual deficiency for hematopoietic RXRα and RXRβ induces HSC exhaustion, myeloid cell/megakaryocyte differentiation, and myeloproliferative-like disease. RXRα and RXRβ maintain HSC quiescence, survival, and chromatin compaction; moreover, transcriptome changes in RXRα;RXRβ-deficient HSCs include premature acquisition of an aging-like HSC signature, MYC pathway upregulation, and RNA intron retention. Fitness loss and associated RNA transcriptome and splicing alterations in RXRα;RXRβ-deficient HSCs are prevented by Myc haploinsufficiency. Our study reveals the critical importance of RXRs for the maintenance of HSC fitness and their protection from premature aging

    The multi-faceted role of retinoid X receptor in bone remodeling

    Get PDF
    Retinoid X receptors (RXRs) form a unique subclass within the nuclear receptor (NR) superfamily of ligand-dependent transcription factors. RXRs are obligatory partners for a number of other NRs, placing RXRs in a coordinating role at the crossroads of multiple signaling pathways. In addition, RXRs can function as self-sufficient homodimers. Recent advances have revealed RXRs as novel regulators of osteoclastogenesis and bone remodeling. This review outlines the versatility of RXR action in the control of transcription of bone-forming osteoblasts and bone-resorbing osteoclasts, both through heterodimerization with other NRs and through RXR homodimerization. RXR signaling is currently a major therapeutic target and, therefore, knowledge of how RXR signaling affects bone remodeling creates enormous potential for the translation of basic research findings into successful clinical therapies to increase bone mass and improve bone quality.We thank S. Bartlett (CNIC) for editorial assistance. Some of the work reported in this review was supported by a grant from the Spanish Ministry of Economy and Competitiveness (SAF2015-64287) to M. Ricote. The CNIC is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). We apologize to our many colleagues for not being able to cite all relevant references owing to space limitations.S

    Molecular control of tissue-resident macrophage identity by nuclear receptors.

    Get PDF
    Macrophages are key immune cells that reside in almost all tissues of the body, where they exert pleiotropic functions in homeostasis and disease. Development and identity of macrophages in each organ are governed by tissue-dependent signaling pathways and transcription factors that ultimately define specific tissue-resident macrophage phenotypes and functions. In recent years, nuclear receptors, a class of ligand-activated transcription factors, have been found to play important roles in macrophage specification in several tissues. Nuclear receptors are thus important targets for therapies aimed at controlling the numbers and functions of tissue-resident macrophages. This review outlines current knowledge about the critical roles of nuclear receptors in tissue-resident macrophage development, specification, and maintenance.This work was supported by grants from the Spanish Ministerio de Ciencia e Innovacion (MCI) (SAF2017-90604-REDT-NurCaMein, RTI2018-095928-BI00), La Marato de TV3 Foundation (201605-32), and the Comunidad de Madrid (MOIRB2017/BMD-3684) to M.R, and the Formacion de Profesorado Universitario (FPU17/01731) program (MCI) to J.P. The CNIC is supported by the MCI and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Biology and therapeutic applications of peroxisome proliferator- activated receptors

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are ligand dependent transcription factors. The three mammalian PPARs are key regulators of fatty acid and lipoprotein metabolism, glucose homeostasis, cellular proliferation/ differentiation and the immune response. PPARs are therefore important targets in the treatment of metabolic disorders such as insulin resistance and type 2 diabetes mellitus, and are also of interest in relation to chronic inflammatory diseases such as atherosclerosis, arthritis, chronic pulmonary inflammation, pancreatitis, inflammatory bowel disease, and psoriasis. Recent advances have attributed novel functions to PPARs in blood pressure regulation, neuroinflammation, nerve-cell protection, inflammatory pain reduction, and the hypothalamic control of metabolism. The abundant pleiotropic actions of PPARs suggest that PPAR agonists have enormous therapeutic potential. However, current PPAR-based therapies often have undesired side effects due to the concomitant activation of PPARs in non-target cells. There is therefore growing interest in the development of cell-specific PPAR agonists and improvement of the clinical use of PPAR ligands. This review gives an overview of PPAR functions and discusses the current and potential medical implications of PPAR ligands in various pathologies, ranging from metabolic disorders to cardiovascular disease, chronic inflammation, neurodegenerative disorders and cancer.The work performed in the authors’ laboratory was funded by awards from the Spanish Ministry of Science and Innovation (SAF2009 07466) and the Fundación Genoma España, Marató TV3 to M. Ricote, and a “People” Marie Curie Intra European Fellowship within the 7th European Community Framework Programme to T. Rőszer. The CNIC is supported by the S Spanish Ministry of Health and Consumer Affairs and the Pro-CNIC FoundationS

    Retinoid X receptors in macrophage biology

    Get PDF
    Retinoid X receptors (RXRs) form a distinct and unique subclass within the nuclear receptor (NR) superfamily of ligand-dependent transcription factors. RXRs regulate a plethora of genetic programs, including cell differentiation, the immune response, and lipid and glucose metabolism. Recent advances reveal that RXRs are important regulators of macrophages, key players in inflammatory and metabolic disorders. This review outlines the versatility of RXR action in the control of macrophage gene transcription through its heterodimerization with other NRs or through RXR homodimerization. We also highlight the potential of RXR-controlled transcriptional programs as targets for the treatment of pathologies associated with altered macrophage function, such as atherosclerosis, insulin resistance, autoimmunity, and neurodegeneration.Work performed in the laboratory of the authors was funded by awards from the Spanish Ministry of Economy and Competitiveness (SAF201231483) to M.R., a European Foundation for the Study of Diabetes–Lilly Fellowship Program to T.R., and a Spanish Ministry of Science, and Innovation (FPU, AP2008-00508) grant to M.C. The CNIC is supported by the Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation.S
    corecore