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Abstract 32 

Macrophages are key immune cells that reside in almost all tissues of the body, where 33 

they exert pleiotropic functions in homeostasis and disease. The development and 34 

identity of macrophages in each organ is governed by tissue-dependent signaling 35 

pathways and transcription factors that ultimately define specific tissue-resident 36 

macrophage phenotypes and functions. In recent years, nuclear receptors, a class of 37 

ligand-activated transcription factors, have been found to play important roles in 38 

macrophage specification in several tissues. Nuclear receptors are thus important 39 

targets for therapies aimed at controlling the numbers and functions of tissue-resident 40 

macrophages. This review outlines current knowledge about the critical roles of 41 

nuclear receptors in tissue-resident macrophage development, specification, and 42 

maintenance. 43 

 44 

Introduction 45 

Macrophages are key components of the innate immune system that mediate the 46 

clearance of pathogens, dead cells, and foreign particles by phagocytosis, a proccess  47 

first described by Ilya Metchnikoff [1]. These cells are present in all body tissues, where 48 

they play immunological roles and maintain tissue homeostasis. In addition to these 49 

features common to all macrophages, each tissue-resident macrophage (TRM) 50 

population has a unique phenotype, identity, and function. For instance, lung alveolar 51 

macrophages are involved in the clearance of surfactant proteins; liver-resident 52 

Kupffer cells (KCs) regulate iron metabolism and clearance of gut-derived microbial 53 

products; and microglia (brain-resident macrophages) regulate neuronal development 54 

and function, angiogenesis, and vascular anastomosis [2].  55 

Recent studies have demonstrated that TRMs are mainly of embryonic origin and are 56 

maintained within tissues by self-renewal. However, some tissues, such as the 57 

intestine and dermis, contain bone-marrow derived macrophages under steady state; 58 

these macrophages are short-lived cells that are continously recruited to these tissues 59 

(for extensive reviews on macrophage ontogeny see [2-5]). Interestingly, the 60 

dependence of macrophage replenishmemt on blood monocytes is age and sex 61 

dependent [6]. Regardless of their origin, the functional specialization of TRMs is 62 

determined by the tissue in which they reside. Macrophages are exposed to local 63 

signals derived from their niche microenvironments. These signals play instructive 64 
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roles in establishing TRM identity and function by modulating the expression of distinct 65 

sets of transcription factors (TFs) and enhancer pattern in each TRM population [7,8].  66 

 67 

Nuclear receptors in tissue macrophage development and specialization 68 

During embryonic development, primitive macrophages initiate a core transcriptional 69 

program in the fetal liver that includes pattern recognition proteins, scavenger proteins, 70 

and cytokine receptors [9]. When macrophage precursors migrate to specific tissues 71 

and are exposed to niche signals, this core transcriptional program is diversified by 72 

other specific transcriptional programs, giving rise to differentiated TRMs [9]. The 73 

myeloid pioneer TF PU.1 is shared by all TRMs, binding throughout the macrophage 74 

nucleus to promoter and enhancer regions [7]. Other TFs such as CEBP, MAF, and 75 

MAFB work together with PU.1 to shape shared TRM functions. Within each 76 

destination tissue, these TFs combine with tissue-specific TFs to define the epigenetic 77 

and transcriptomic states of TRMs, with most of their transcriptional program being 78 

specific to the tissue of residence [10]. Several TFs that control macrophage tissue 79 

specialization are nuclear receptors (NRs) (for a concise review on NRs, see [11]). 80 

NRs form a superfamily of ligand-activated TFs that regulate a number of physiologic 81 

processes in humans, including metabolism, homeostasis, and reproduction. NRs are 82 

activated by steroid hormones and other lipid-soluble signals, including retinoic acid 83 

(RA), fatty acid metabolites, oxysterols, thyroid hormone, and vitamin D3 [11]. In 84 

addition, several synthetic compounds have been identified as NR ligands [11]. NRs 85 

are targets for the development of drugs to treat many diseases, including diabetes, 86 

cancer, inflammation, atherosclerosis, and endocrine and reproductive disorders. 87 

These receptors thus represent promising targets for new therapies aimed at 88 

modulating TRMs in disease pathogenesis and tissue repair. Progress toward this goal 89 

requires understanding of how NRs control TRM development, functional 90 

specialization, and maintenance in their host tissue. In this review, we summarize the 91 

role of different NRs and specific niche signals in the specification of TRMs (Figure 1). 92 

 93 

Serous cavity macrophages 94 

The serous cavities of mice (peritoneal, pleural, and pericardial cavities) contain two 95 

macrophage subsets—large peritoneal macrophages (LPMs) and small peritoneal 96 

macrophages—distinguished by their origin, size, cell surface markers, and gene 97 



4 
 

expression [12-14]. In steady state, the most abundant peritoneal cavity subset is 98 

formed by the LPMs. LPMs have high phagocytic activity against apoptotic and 99 

senescent cells [12,15], are implicated in the maintenance of intestinal microbial 100 

homeostasis by promoting the production of IgA by gut B1 cells, and participate in the 101 

resolution of liver injury [16,17]. 102 

A central role in LPM tissue specialization is played by the TF GATA-binding protein 103 

6 (GATA-6) [13,16,18,19]. This was first demonstrated by studies showing that 104 

eliminating Gata6 expression in macrophages interferes with LPM location, 105 

proliferation, and survival. Based on promoter studies and restriction of vitamin A 106 

availability, Okabe and colleges demonstrated that RA controls peritoneal LPM 107 

development, function, and identity through activation of RA receptor beta (RARβ) and 108 

the induction of Gata6 [16]. Profiling of the dynamics of histone modifications across 109 

TRMs further showed that RARβ-induced GATA-6 acts in concert with a common set 110 

of primed enhancers established by PU.1 and other TFs to drive the selection of LPM-111 

specific enhancers [7].  112 

The lack of studies in RAR knockout mice has impeded the elucidation of specific roles 113 

of the three RAR isoforms or compensatory effects among them in the determination 114 

of LPM specification during development or its identity after birth. Another RA-induced 115 

NRs, the retinoic X receptors alpha and beta (RXRα and RXRβ), have recently been 116 

shown to control LPM identity in serous cavities [20]. Using mouse models lacking 117 

both RXR isoforms in macrophages, this study demonstrated that whereas RXRs are 118 

dispensable for LPM embryonic development, they are required for the expansion of 119 

LPMs during neonatal life and for LPM lipid metabolism and survival during adult 120 

homeostasis. Transcriptional and epigenomic profiling of LPMs revealed that RA 121 

signaling partially mediates LPM expansion and maintenance via RXRs. Gata6 is 122 

downregulated in RXR-deficient LPMs; however, the expression profile of RXR- and 123 

GATA-6-deficient LPMs has limited overlap, suggesting that RXRs control peritoneal 124 

LPMs via GATA-6-dependent and GATA-6-independent mechanisms. Thus, other 125 

RXR heterodimers and/or RXR homodimers might regulate specific LPM 126 

transcriptional signature. 127 

Recent reports have characterized the stromal niche that provides the RA that 128 

supports the LPM-specific transcriptional landscape [14,16]. LPMs are free-floating 129 
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cells that do not form direct contacts with stromals cell in steady state [21]. However, 130 

LPM Gata6 expression is supported by the peritoneal microenvironment, as suggested 131 

by the loss of LPM Gata6 expression when these cells are cultured in vitro or 132 

transferred outside the peritoneal cavity in vivo [7,8]. Initial studies demonstrated that 133 

the omentum expresses high levels of Raldh2 (the rate-limiting enzyme catalyzing the 134 

final step in RA synthesis from retinol), suggesting a high local RA concentration at 135 

this location [16]. This conclusion is supported by recent evidence showing robust RA 136 

metabolism in fibroblasts and mesothelial cells present in the omentum and other 137 

mesothelial tissues in the pericardial and pleural cavities [14]. Mass spectrometry 138 

analysis identified all-trans retinoic acid (ATRA), a ligand for RARs, and 9/13cis RA, 139 

an activator of RXRs, as retinol-derived metabolites produced by the omentum [14]. 140 

These studies indicate that omental RA is necessary for GATA-6 expression in LPMs 141 

and therefore for their specific gene signature. However, a number of LPM hallmark 142 

genes, including Rara and Rarg, are GATA-6- and RA-independent [7,14]. Uncertainty 143 

remains about the nature of the RA-independent environmental signals that modulate 144 

LPM identity.  145 

Osteoclasts 146 

Osteoclasts are multinucleated bone-resident macrophages that maintain bone 147 

homeostasis through their bone resorption activity. Although they have been formally 148 

identified as cells of hematopoietic origin [22], a recent report demonstrated that 149 

osteoclasts required for normal bone development and tooth eruption originate from 150 

embryonic erythro-myeloid progenitors [23]. Osteoclast differentiation and function is 151 

highly controlled at the transcriptional level by changes in the expression of numerous 152 

regulatory genes, including several TFs (for a review, see [24]). NRs are known to 153 

regulate osteoclastogenesis and bone remodelling [25,26]. Here we focus on cell-154 

autonomous effects of NRs in osteoclast differentiation. Several studies have linked 155 

the detrimental effects of thiazolidinediones on bone to the action of peroxisome 156 

proliferator-activated receptor gamma (PPARγ)-mediated stimulation of 157 

osteoclastogenesis and bone resorption in [27]. PPARγ promotes both osteoclast 158 

lineage commitment and osteoclast maturation by maintaining the levels of the key 159 

regulator of osteoclastogenesis c-fos in monocyte precursors and osteoclasts [28]. 160 

The pro-osteoclastogenic effects of thiazolidinediones are also mediated by PPARγ 161 

costimulator-1 (PGC-1β) [29] and the orphan NR estrogen-related receptor alpha 162 
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(ERRα), which show homology to estrogen receptors (ERs)  [30]. ERs also play a role 163 

in bone formation and resorption, as evidenced by the postmenopause increase 164 

osteoporosis. Although most effects of ERs on osteoclastogenesis are mediated by 165 

decreasing the expression of osteoclastogenic cytokines in osteoblasts, ERs also 166 

suppresses RANKL-induced osteoclast differentiation by regulating c-Jun expression 167 

and activation in osteoclast progenitors [31]. RXRs have a cell-autonomous function 168 

in osteoclast proliferation, differentiation, and activation [32]. Loss of RXRs in 169 

osteoclast progenitors resulted in deficient osteoclastogenesis and osteopetrosis in 170 

adult male mice and protection from bone loss in an experimental model of 171 

postmenopausal osteoporosis. RXR-deficient adult mice developed abnormally large, 172 

multinucleated, non-resorbing osteoclasts. Our studies demonstrated that this 173 

phenotype was driven by decreased Mafb expression and an altered proliferative 174 

response of RXR-deficient osteoclast progenitors to macrophage colony-stimulating 175 

factor (M-CSF). RXR-deficient osteoclasts also showed reduced expression of the 176 

master regulator of osteoclast differentiation NFATc1. Further studies will be aimed at 177 

elucidating whether this reduction is due to direct regulation of Nfact1 expression by 178 

RXRs or is simply the consequence of altered osteoclastogenesis in RXR-deficient 179 

mice. 180 

 181 

Alveolar macrophages 182 

Alveolar macrophages (AMs) are one of the two major macrophage populations in the 183 

lung, together with insterstitial macrophages. AMs are derived from fetal liver 184 

progenitors [33,34] and are maintained in lung tissue by self-renewal, with a minimal 185 

contribution from circulating monocytes [35]. In homeostasis, AMs engulf and clear 186 

lipoprotein-containing alveolar surfactants [36]. The correct development, 187 

differentiation, and gene signature of AMs requires PPARγ [37,38]. Adult mice with 188 

PPARγ-deficiency in myeloid cells have a reduced AM pool. AMs also require PPARγ 189 

perinatally for their final differentiation from AM precursors to mature AMs, and PPARγ 190 

has been found to be required for the differentiation of fetal monocytes to AMs during 191 

the final days of fetal development [37]. Transcriptomic studies reported that PPARγ 192 

is the key TF for AM identity, giving them their specific gene signature, including lipid 193 

uptake and catabolism genes. PPARγ-deficient AMs show enhanced cholesterol 194 
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esterification and a foam cell-like phenotype [37]. These findings indicate that 195 

PPARγ in AMs controls both survival and function. Furthermore, the niche signals 196 

required for AM PPARγ expression have been elucidated. During development, 197 

PPARγ expression is driven by granulocyte-macrophage colony-stimulating factor 198 

(GM-CSF) secreted by alveolar type II epithelial cells and fetal monocytes in the lung 199 

microenvironment, thus driving complete differentiation of fetal monocytes into AMs 200 

[33,37]. An additional signal governing AM PPARγ expression is transforming growth 201 

factor beta (TGF-β), which is required for AM development, differentiation from AM 202 

precursors, and the maintenance of mature AMs. TGF-β is produced by AMs 203 

themselves, thus generating an autocrine loop to allow PPARγ-dependent AM self-204 

maintenance [39].  205 

 206 

Kupffer cells 207 

Liver-resident KCs are embryo-derived macrophages that are capable of self-208 

maintenance [35]. Recent reports described the unique KC transcription program and 209 

epigenetic landscape controlled by liver X receptor alpha (LXRα) [40-42]. LXRα 210 

expression is upregulated in embryonic fetal macrophages, and this expression is 211 

maintained in mouse KCs throughout life, suggesting that LXR-specific gene 212 

expression is important for the early establishment of KC identity [9]. Although LXRα 213 

depletion does not reduce KC numbers, it impairs expression of the KC maturity 214 

markers Clec4F and Timd4 [40]. Recent studies using an elegant approach in KC-215 

depleted mice have deciphered the liver macrophage niche signals that govern KC 216 

identity [41,42]. These studies revealed hierarchical TF interactions, in which PU.1 and 217 

RBPJ are required for later LXRα and SMAD binding to primed cis-regulatory elements 218 

that will define the KC genetic landscape. In homeostasis, KCs are in close contact 219 

with others cells in the liver niche: hepatocytes, sinusoidal endothelial cells, and 220 

hepatic stellate cells. This niche architecture imprints KC identity at the transcriptional 221 

level. When KCs are depleted, various liver signals recruit monocytes to the newly 222 

empty niche, and these monocytes then undergo a phenocopying process until they 223 

become a mature KCs. These infiltrating monocytes have preexisting but poised 224 

regulatory elements, including chromatin-bound PU.1 and RBPJ, and express the cell 225 

membrane receptor Notch. Once the monocytes have been recruited, sinusoidal 226 
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epithelial cell-produced DLL4 activates the Notch signaling pathway, leading to the 227 

expression of the KC-lineage-dependent TFs LXRα and SpiC, selection of KC 228 

enhancers, and TGF-β receptor expression. The authors propose that at this stage 229 

these cells are no longer monocytes but rather repopulating liver macrophages, KC-230 

like cells, with a transcriptional identity between that of a circulating monocyte and a 231 

mature KC. This repopulating liver macrophage population senses TGF-β pathway 232 

activation, leading to SMAD expression and subsequent SMAD binding to chromatin. 233 

Furthermore, mass spectrometry analysis showed that desmosterol is the most 234 

abundant oxysterol species in the liver. This hepatocyte-produced ligand activates 235 

LXRα, leading to the expression of KC identity genes. However, since KCs were 236 

depleted in these studies using diphtheria toxin receptor (DTR)-conditional models, it 237 

is important to recognise that they do not reflect homeostatic conditions but rather 238 

systemic inflammation. Future studies are also needed to address the role of LXRα  239 

during embryonic and neonatal KC development. 240 

 241 

Langerhans cells 242 

The definition of Langerhans cells (LCs) has been a matter of debate, and many 243 

authors now consider them to be embryo-derived epidermis resident macrophages 244 

with some dendritic-cell features [43,44]. LCs have a low self-renewal rate, but under 245 

inflammatory conditions they can be replaced by hair follicle-infiltrating bone marrow-246 

derived monocytes that give rise to new LCs [43]. Many TFs that govern LC identity 247 

have been identified [43]; however, little is known about NRs in LCs. LC development 248 

and identity are controlled by RARα-RA signaling [45], and a lack of RARα leads to 249 

an almost complete absence of LCs. After birth, RAR-deficient mice have abnormally 250 

large and immature LCs, with low MHCII expression on postnatal day 1 that declines 251 

almost to zero from day 3 and remains absent into adulthood. Interestingly, in vitro 252 

studies in human blood monocytes and mouse bone marrow cells demonstrate that 253 

RA blocks LC differentiation [45]. The authors suggested that RARα maintains gene 254 

expression at the epigenetic level in a ligand-independent manner, as shown 255 

previously [46]. This would imply a complex regulatory mechanism in which activation 256 

of RARα impairs its own DNA-binding ability. Furthermore, transcriptomic studies 257 

show that RARα is required for the expression of LC identity genes, including the 258 
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canonical LC TF Runx3. The role of RAR in LC identity is further demonstrated by the 259 

finding that RAR-deficient LCs upregulate expression of the LC-suppressing TF 260 

C/EBPβ [43].  261 

Another NR, the vitamin D receptor (VDR), is required for M-CSF-dependent local 262 

proliferation and wound healing by LCs after cutaneous injury [47]. These studies 263 

demonstrate a critical role for local LCs versus recruited monocytes in skin repair. In 264 

addition, they demonstrate that the local microenvironment modulates LC self-renewal 265 

after injury. Thus, induction of M-CSF (a master regulator of macrophage proliferation) 266 

by the active mebabolite of vitamin D, 1,25-dihydroxyvitamin D, is abolished in VDR-267 

deficient cultured fibroblasts. It remains to be determined whether the action of VDR 268 

in skin repair depends on circulating 1,25-dihydroxyvitamin D or in autocrine activation 269 

of vitamin D by local LCs.   270 

 271 

Metallophilic and marginal zone macrophages 272 

During embryogenesis, the macrophage population of the naïve spleen is composed 273 

exclusively of red pulp macrophages. From around 1 month after birth, the spleen 274 

architecture is formed by red and white pulp. White pulp harbors bone marrow-derived 275 

splenic macrophages and, in the marginal zone between white and red pulp, 276 

metallophilic and marginal zone macrophages (both called MZ macrophages) [48]. 277 

During homeostasis, white pulp macrophages capture blood-borne antigens. Some 278 

TFs have been shown to control the development of specific splenic macrophages, 279 

Spic and IRF8 regulate transcription in red-pulp macrophages [49,50], whereas the 280 

NR LXRα regulates transcription in MZ macrophages [51]. Mice lacking LXRα lack MZ 281 

macrophages but show no changes in red-pulp splenic macrophages, possibly 282 

indicating that LXRα is dispensable for the development of embryo-derived splenic 283 

macrophages. However, the empty MZ niche allows adoptively transferred LXRα-284 

sufficient monocytes to enter and differentiate into MZ macrophages, finally 285 

demonstrating that adult LXRα-dependent bone-marrow hematopoiesis is the source 286 

of these macrophages [51]. Moreover, constitutive genetic or pharmacological LXRα 287 

activation accelerates MZ macrophage differentiation but does not induce marginal 288 

zone markers in red pulp macrophages during macrophage renewal [51]. The authors 289 

suggested that additional signals at the border with the red pulp might govern marginal 290 
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zone macrophage identity. The endogenous LXRα ligands and niche signals remain 291 

unknown, although oxysterols are possible candidates [51], as in KCs. Further work is 292 

also needed to identify the mechanism by which LXRα controls the development of 293 

mature MZ macrophages from bone marrow progenitors and define the functional 294 

impact of LXRα in these splenic macrophages.  295 

 296 

Thymic macrophages 297 

Thymus-resident macrophages are critical for clearing the vast numbers of apoptotic 298 

thymocytes generated during lymphocyte selection in the thymus [52]. The orphan 299 

receptor Nur77, the master regulator of Ly6CNEG patrolling monocytes [53], has 300 

recently been shown to control the development and function of a subset of resident 301 

macrophages in the thymus [52]. Mice lacking Nur77 expression in myeloid cells 302 

presented a drastic reduction of CD11b−F4/80+ thymic macrophages, with no changes 303 

in other thymus-resident macrophages or in macrophages residing in the spleen, lung, 304 

brain, pancreas, peritoneum, or bone marrow [52]. The authors also observed a 305 

reduced apoptotic cell engulfment capacity in Nur77-deficient CD11b−F4/80+ thymus 306 

macrophages [52]. Using parabiosis and bone marrow transplantation studies, as well 307 

as monocyte-tracking mouse models, the authors demonstrated that CD11b−F4/80+ 308 

thymus macrophages derive from hematopoietic progenitors and not from short-lived 309 

circulating monocytes. Furthermore, M-CSF-depleted mice mimic the defects 310 

associated with Nur77 depletion, revealing M-CSF as a key niche signal regulating 311 

CD11b−F4/80+ thymic macrophage maintenance [52]. These studies demonstrate the 312 

importance of Nur77-dependent CD11b−F4/80+ macrophages in the maintenance of 313 

thymic homeostasis and self-tolerance, since the lack of this NR leads to accelerated 314 

thymic demise and pro-inflammatory cytokine production. 315 

 316 

Conclusions and future perspectives 317 

Macrophages are key components of tissue immunity, present in almost all tissues 318 

throughout the body. TRMs are not a homogeneous population, but are instead hugely 319 

diverse. This diversity is driven by microenvironment-derived signals that regulate the 320 

expression of unique TFs in each TRM population, leading to differences in epigenetic 321 
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profiles, transcriptional programmes, and functions. TFs of the NR family are important 322 

pharmacological targets for the control of gene transcription, with defined roles in 323 

macrophage immune functions and lipid metabolism. In the last decade, a growing 324 

body of evidence has demonstrated that NRs play important roles in TRM 325 

diversification and identity, specifically in macrophages residing in the serous cavities, 326 

bone, lung, liver, epidermis, spleen, and thymus. Whether any NRs play a role in 327 

macrophages residing in other tissues will require further investigation. In this regard, 328 

it is very important to consider the Cre-driver used to study each specific TRM 329 

population. LysM-cre transgenic mice have been extensively used to study the role of 330 

NRs in TRMs. However, this Cre system results in low recombination in some TRMs 331 

[54,55], and the use of this system therefore may have precluded the discovery of 332 

some phenotypes in specific tissues. Other important aspects of NR regulation of 333 

TRMs remain to be elucidated. For instance, little is known about the environmental 334 

signals that induce the expression of different NRs in each TRM population. Moreover, 335 

since NRs are ligand-induced TFs, the production of specific endogenous NR ligands 336 

by each tissue environment might represent an additional level of regulation explaining 337 

the diversity of NRs with roles in TRM specification. Natural ligands that bind to and 338 

activate specific NRs in TRMs include RA in peritoneal macrophages and desmosterol 339 

in KCs. However, more work is needed to identify other endogenous ligands and 340 

regulators mediating macrophage development, identity, and function in other tissues. 341 

A detailed study of how these microenvironmental signals and NR ligands fluctuate 342 

during homeostasis and disease would provide valuable information about TRM 343 

regulation. Further work is also needed to determine whether NRs with identified roles 344 

in mouse TRM development and identity play equivalent roles in human TRMs. Such 345 

studies will help to identify new drugs and mechanisms through which TRMs might be 346 

manipulated for therapeutic benefit. 347 
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 360 

Figure 1. Regulation of tissue resident macrophages by nuclear receptors and 361 

niche signals. ERRα, estrogen receptor alpha; VDR, vitamin D receptor; LXRα, liver 362 

X receptor alpha; NR, nuclear receptor; RA, retinoic acid; RARα, retinoic acid receptor 363 

alpha; Raldh2, retinaldehyde dehydrogenase 2; RXR, retinoid X receptor; PPARγ, 364 

perioxisome proliferator-activated receptor gamma; DLL4, delta ligand 4; GM-CSF, 365 

granulocyte-macrophage colony-stimulating factor; M-CSF, macrophage colony-366 

stimulating factor; TGF-β, transforming growth factor beta.  367 
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