39 research outputs found
Microcirculatory changes and skeletal muscle oxygenation measured at rest by non-infrared spectroscopy in patients with and without diabetes undergoing haemodialysis
Introduction: Haemodialysis has direct and indirect effects on skin and muscle microcirculatory regulation that are severe enough to worsen tolerance to physical exercise and muscle asthenia in patients undergoing dialysis, thus compromising patients' quality of life and increasing the risk of mortality. In diabetes these circumstances are further complicated, leading to an approximately sixfold increase in the incidence of critical limb ischaemia and amputation. Our aim in this study was to investigate in vivo whether haemodialysis induces major changes in skeletal muscle oxygenation and blood flow, microvascular compliance and tissue metabolic rate in patients with and without diabetes. Methods: The study included 20 consecutive patients with and without diabetes undergoing haemodialysis at Sant Andrea University Hospital, Rome from March to April 2007. Near-infrared spectroscopy (NIRS) quantitative measurements of tissue haemoglobin concentrations in oxygenated [HbO(2)] and deoxygenated forms [HHb] were obtained in the calf once hourly for 4 hours during dialysis. Consecutive venous occlusions allowed one to obtain muscular blood flow (mBF), microvascular compliance and muscle oxygen consumption (mVO(2)). The tissue oxygen saturation (StO(2)) and content (CtO(2)) as well as the microvascular bed volume were derived from the haemoglobin concentration. Nonparametric tests were used to compare data within each group and among the groups and with a group of 22 matched healthy controls. Results: The total haemoglobin concentration and [HHb] increased significantly during dialysis in patients without and with diabetes. Only in patients with diabetes, dialysis involved a [HbO(2)], CtO(2) and mVO(2) increase but left StO(2) unchanged. Multiple regression analysis disclosed a significant direct correlation of StO(2) with HbO(2) and an inverse correlation with mVO(2). Dialysis increased mBF only in diabetic patients. Microvascular compliance decreased rapidly and significantly during the first hour of dialysis in both groups. Conclusions: Our NIRS findings suggest that haemodialysis in subjects at rest brings about major changes in skeletal muscle oxygenation, blood flow, microvascular compliance and tissue metabolic rate. These changes differ in patients with and without diabetes. In all patients haemodialysis induces changes in tissue haemoglobin concentrations and microvascular compliance, whereas in patients with diabetes it alters tissue blood flow, tissue oxygenation (CtO(2), [HbO(2)]) and the metabolic rate (mVO(2)). In these patients the mVO(2) is correlated to the blood supply. The effects of haemodialysis on cell damage remain to be clarified. The absence of StO(2) changes is probably linked to an opposite [HbO(2)] and mVO(2) pattern
Incremental Peritoneal Dialysis Favourably Compares with Hemodialysis as a Bridge to Renal Transplantation
Background. The value of incremental peritoneal dialysis (PD) as a bridge to renal transplantation (Tx) has not been specifically addressed.
Methods. All consecutive Stage 5 CKD patients with at least 1 year predialysis followup, starting incremental PD or HD under our care and subsequently receiving their first renal Tx were included in this observational cohort study. Age, gender, BMI, underlying nephropathy, residual renal function (RRF) loss rate before dialysis and RRF at RRT start, comorbidity, RRT schedules and adequacy measures, dialysis-related morbidity, Tx waiting time, RRF at Tx, incidence of delayed graft function (DGF), in-hospital stay for Tx, serum creatinine at discharge and one year later were collected and compared between patients on incremental PD or HD before Tx.
Results. Seventeen patients on incremental PD and 24 on HD received their first renal Tx during the study period. Age, underlying nephropathy, RRF loss rate in predialysis, RRF at the start of RRT and comorbidity did not differ significantly. While on dialysis, patients on PD had significantly lower epoetin requirements, serum phosphate, calciumxphosphate product and better RRF preservation. Delayed graft function (DGF) occurred in 12 patients (29%), 1 on incremental PD and 11 on HD. Serum creatinine at discharge and 1 year later was significantly higher in patients who had been on HD.
Conclusions. In patients receiving their first renal Tx, previous incremental PD was associated with low morbidity, excellent preservation of RRF, easier attainment of adequacy targets and significantly better immediate and 1-year graft function than those observed in otherwise well-matched patients previously treated with HD
Parasympathetic activity and total fibrotic kidney in autosomal-dominant polycystic kidney disease patients: a pilot study
PurposeRenin-angiotensin system hyperactivation in autosomal-dominant polycystic kidney disease (ADPKD) patients leads to early hypertension. Cystic enlargement probably causes parenchymal hypoxia, renin secretion, and endothelial dysfunction. Sympathetic and parasympathetic balance is altered in this condition, especially during the night, also affecting blood pressure circadian rhythm. Aim of this study was to evaluate sympathetic/parasympathetic balance using heart rate variability (HRV) parameters and find a correlation between HRV and renal damage progression, as total kidney volume enlargement, in ADPKD patients.MethodsSixteen adult ADPKD patients were enrolled in the study. Eleven patients (68.8%) were male, and the median age was 42 years (IQR 36-47.5). HRV parameters were calculated using 24 h-ECG Holter. A kidney magnetic resonance imaging (MRI) scan 3 Tesla was performed to evaluate total kidney volume (TKV) and total fibrotic volume (TFV).ResultsA statistically significant positive linear correlation was observed between length of kidneys and frequency domain parameters as low frequency (LF) (r = 0.595, p < 0.05) and LFday (r = 0.587, p < 0.05). Moreover, a statistically significant positive linear correlation exists between high frequency (HF) and TFV (r = 0.804, p < 0.01) or height-adjusted (ha) TFV (r = 0.801, p < 0.01). Finally, we found a statistically significant positive linear correlation between HFnight and TKV (r = 0.608, p < 0.05), ha-TKV (r = 0.685, p < 0.01), TFV (r = 0.594, p < 0.05), and ha-TFV (r = 0.615, p < 0.05).ConclusionWe suppose that the increase in TKV and TFV could lead to a parasympathetic tone hyperactivation, probably in response to hypoxic stress and vasoconstriction due to cystic enlargement
Contrast-Induced Acute Kidney Injury and Endothelial Dysfunction: The Role of Vascular and Biochemical Parameters
Introduction: Contrast-induced acute kidney injury (CIAKI) is one of the main causes
of acute renal failure in hospitalized patients, following the administration of iodinated contrast
medium used for CT scans and angiographic procedures. CIAKI determines a high cardiovascular
risk and appears to be one of the most feared complications of coronary angiography, causing a
notable worsening of the prognosis with high morbidity and mortality. Aim: To evaluate a possible
association between the renal resistive index (RRI) and the development of CIAKI, as well as an
association with the main subclinical markers of atherosclerosis and the main cardiovascular risk
factors. Materials and Methods: We enrolled 101 patients with an indication for coronary angiography.
Patients underwent an assessment of renal function (serum nitrogen and basal creatinine, 48 and 72 h
after administration of contrast medium), inflammation (C reactive protein (CRP), serum calcium and
phosphorus, intact parathormone (iPTH), 25-hydroxyvitaminD (25-OH-VitD), serum uric acid (SUA),
total cholesterol, serum triglycerides, serum glucose and insulin). All patients also carried out an
evaluation of RRI, intima-media thickness (IMT), interventricular septum (IVS) and the ankle-brachial
index (ABI). Results: 101 patients (68 male), with a mean age of 73.0 Âą 15.0 years, were enrolled for
the study; 35 are affected by type 2 diabetes mellitus. A total of 19 cases of CIAKI were reported
(19%), while among diabetic patients we reported an incidence of 23% (8 patients). In our study,
patients with CIAKI had significantly higher RRI (p < 0.001) and IMT (p < 0.001) with respect to the
patients who did not develop CIAKI. Furthermore, patients with CIAKI had significantly higher CRP
(p < 0.001) and SUA (p < 0.006). Conclusions: We showed a significant difference in RRI, IMT, SUA
and CRP values between the population developing CIAKI and patients without CIAKI. This data
appears relevant considering that RRI and IMT are low-cost, non-invasive and easily reproducible
markers of endothelial dysfunction and atherosclerosis
An explainable model of host genetic interactions linked to COVID-19 severity
We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients
Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19
Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19
Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage
The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFι production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-ι: tumor necrosis factor
Host genetics and COVID-19 severity: increasing the accuracy of latest severity scores by Boolean quantum features
The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147â173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity.. IPGS leads to an accuracy of 55%â60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into âBoolean quantum features,â inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores (IPGSph1 and IPGSph2). By applying a logistic regression with both IPGS, (IPGSph2 (or indifferently IPGSph1) and age as inputs, we reached an accuracy of 84%â86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147â173) by a factor of 10%