1,422 research outputs found

    Semantic-driven knowledge-enabled cognitive decision support system

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.The importance of knowledge and cognition in business intelligence and decision support systems (DSS) is indisputable. However two major issues, a) biases in cognition, and b) knowledge integration overhead in knowledge warehousing, hinder their optimum utility in such systems. We address the issue of biases by proposing semantic de-biased associations (SDA) model, which is an improvement over the conventional causal map representation of mental models. SDA model incorporates semantics and contextual information to implement automated de-biasing by employing de-biasing techniques and algorithm into the inherent process of mental model elicitation, storage and retrieval. An elicitation process customised for SDA-based representation was also proposed namely SDA articulation and elicitation cycle. SDA model automates the process of mental model validation and integration, so as to prevent any espoused theories to be stored in the system. It also provides faster access to relevant knowledge, while creating a knowledge cycle between user and the system, which provides learning and knowledge growth opportunities to the system users, promoting organizational learning. The issue of knowledge integration overhead is dealt with by proposing a unified, standard storage structure for knowledge warehousing in subject-oriented semantic knowledge warehouse (SSKW). The unified storage structure is achieved through categorising knowledge on syntactic level, and creating universal templates of these categories. In addition, the rules of how they can be connected together are outlined. The categories of knowledge, formalised, are object, process, and event. The connections between them are implemented through semantic relationships. The SSKW provides a domain-independent knowledge warehousing architecture to store knowledge in a subject-oriented, semantic, integrated, systematic and meaningful manner. It incorporates object-oriented, semantic, and human-centric approaches to facilitate an intuitive and efficient communication. It prevents loss of knowledge, improves precision of output, and ensures efficient delivery of knowledge when required. The SDA model and SSKW are integrated together in this research to form a human-centric DSS, semantic-driven knowledge-enabled cognitive decision support system (SCDSS). SCDSS accumulates knowledge of many decision makers over time, thus if a decision maker leaves the organisation, his/her knowledge is retained through this system. Moreover, it automates the dissemination of knowledge across the organisation. Two evaluations were conducted to measure the performance of SCDSS against selected criteria. The results of the evaluations show that SCDSS successfully mitigates availability, framing, contextual and group biases, and generates new knowledge during decision making process. The results also demonstrate the effectiveness of SCDSS in knowledge sharing and enhancement, efficiency in producing output; and the relevance of knowledge in the output. The system can be accessed at http://tasneememon.com/SCDSS/index.php

    MODLEACH: A Variant of LEACH for WSNs

    Full text link
    Wireless sensor networks are appearing as an emerging need for mankind. Though, Such networks are still in research phase however, they have high potential to be applied in almost every field of life. Lots of research is done and a lot more is awaiting to be standardized. In this work, cluster based routing in wireless sensor networks is studied precisely. Further, we modify one of the most prominent wireless sensor network's routing protocol "LEACH" as modified LEACH (MODLEACH) by introducing \emph{efficient cluster head replacement scheme} and \emph{dual transmitting power levels}. Our modified LEACH, in comparison with LEACH out performs it using metrics of cluster head formation, through put and network life. Afterwards, hard and soft thresholds are implemented on modified LEACH (MODLEACH) that boast the performance even more. Finally a brief performance analysis of LEACH, Modified LEACH (MODLEACH), MODLEACH with hard threshold (MODLEACHHT) and MODLEACH with soft threshold (MODLEACHST) is undertaken considering metrics of throughput, network life and cluster head replacements.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Analysis of indoor environment and insulation performance of residential house with double envelope vacuum insulation panels

    Get PDF
    Double envelope vacuum insulation panels (VIPs) have a possibility to significantly increase the service lifetime. In this paper, double envelope VIPs were produced and installed in the residential house. The performance of installed VIPs was evaluated by using the measuring data of heat flux meter. In addition, the total energy, the heating load and the indoor thermal environment of this house were measured and analysed. The average heating load and the average temperature difference between room temperature and ambient air temperature on the representative day was 2.49 kW and 29.9 oC, respectively. The heat loss coefficient per floor area was estimated as 0.69 W/(m2K) and it was almost the same as the value calculated at the time of design. The result of indoor environment measurement showed that the room temperature was maintained at around 20 oC and PMV was -0.5 oC or higher although the outside air temperature fluctuated between -5 oC and -10 oC. The effective thermal conductivities of double envelop VIPs were all estimated as 0.01 W/(mK) or less. It is considered that the insulation performance of the vacuum insulation panels is maintained

    Experimental analysis of vacuum pressure and gas flow rate in structured-core transparent vacuum insulation panels

    Get PDF
    The notion that modern buildings should strive to be net-zero energy buildings (NZEBs) is widely accepted. One of the causes leading to high energy usage for space heating, resulting in avoidable carbon emissions, is heat loss via building windows. In order to improve window’s insulation in existing buildings, structured-core transparent vacuum insulation panels (TVIPs) are proposed. TVIPs mainly consist of the structured core material, the low-emissivity film, and the transparent gas barrier envelope. TVIPs have high insulation performance and are inexpensive to manufacture and can be easily installed. Therefore, TVIPs have the potential to improve window’s insulation in existing buildings at a low cost. However, it is necessary to overcome the issue of preventing the pressure rise inside TVIP after vacuum sealing. The authors constructed an experimental setup to quantify the effect of reduction of gas flow rate in TVIP after evacuation by applying the pressure-rate-of-rise-method. In this experiment, a gas barrier film with a straw was used as the vacuum chamber. This could reproduce the pressure increase in the TVIP after sealing and the gas flow rate in the TVIP is evaluated. The experimental result shows that the coated core material and the enclosing getter agent lowered the pressure rise and gas flow rate in TVIP by combining concurrent evacuation and heating. Furthermore, after extending the simultaneous vacuuming and heating period to 8 h and applying the coated core material, and enclosing the getter agent, the internal pressure in TVIP may be lowered to around 1 Pa after 30 min after halting vacuuming. It was confirmed that this pressure satisfied the performance required for TVIPs, and the result was much closer to the realization of TVIPs

    Knowledge, attitudes and practices of barbers about hepatitis B and C transmission in Hyderabad, Pakistan.

    Get PDF
    Hepatitis B and C virus (HBV/HCV) infections are serious global health problems. Shaving by barbers has been identified as the key risk factor for spread of HBV. We conducted a cross-sectional survey of barbers in Hyderabad city, Pakistan in 2007 to establish their knowledge and attitudes to the risk of HBV and HCV transmission and their working patterns. Observations showed that 96.2% washed razors with antiseptic after each client and 95.7% used a new blade with new clients. However, knowledge about the diseases and modes of transmission were poor and only 36.6% knew that hepatitis can be transmitted via shaving instruments. Only 3.2% of 186 barbers were vaccinated against HBV. Strategies are needed for raising awareness and regulations of barbers\u27 practices

    Single-bit adaptive channel equalization for narrowband signals

    Get PDF
    In this paper, a new design of a single-bit adaptive channel equalization is proposed using sigma delta modulation and a single-bit block Least Mean Square (LMS) algorithm. With correlated narrowband input signals, this model is capable to converge and provide equivalent equalization filter with improvement in the SNR and very low Symbol Error Rate (SER). The input, filter coefficients and output values are all in single-bit and ternary format that results in a reduction in hardware complexity compared to traditional multi-bit channel equalization. Additionally, the technique avoids the need for successive conversion from multi-bit to single bit and back at the receiver and transmitter stages

    Design and analysis of short word length DSP systems for mobile communication

    Get PDF
    Recently, many general purpose DSP applications such as Least Mean Squares-Like single-bit adaptive filter algorithms have been developed using the Short Word Length (SWL) technique and have been shown to achieve similar performance as multi-bit systems. A key function in SWL systems is sigma delta modulation (ΣΔM) that operates at an over sampling ratio (OSR), in contrast to the Nyquist rate sampling typically used in conventional multi-bit systems. To date, the analysis of SWL (or single-bit) DSP systems has tended to be performed using high-level tools such as MATLAB, with little work reported relating to their hardware implementation, particularly in Field Programmable Gate Arrays (FPGAs). This thesis explores the hardware implementation of single-bit systems in FPGA using the design and implementation in VHDL of a single-bit ternary FIR-like filter as an illustrative example. The impact of varying OSR and bit-width of the SWL filter has been determined, and a comparison undertaken between the area-performance-power characteristics of the SWL FIR filter compared to its equivalent multi-bit filter. In these experiments, it was found that single-bit FIR-like filter consistently outperforms the multi-bit technique in terms of its area, performance and power except at the highest filter orders analysed in this work. At higher orders, the ΣΔ approach retains its power and performance advantages but exhibits slightly higher chip area. In the second stage of thesis, three encoding techniques called canonical signed digit (CSD), 2’s complement, and Redundant Binary Signed Digit (RBSD) were designed and investigated on the basis of area-performance in FPGA at varying OSR. Simulation results show that CSD encoding technique does not offer any significant improvement as compared to 2’s complement as in multi-bit domain. Whereas, RBSD occupies double the chip area than other two techniques and has poor performance. The stability of the single-bit FIR-like filter mainly depends upon IIR remodulator due to its recursive nature. Thus, we have investigated the stability IIR remodulator and propose a new model using linear analysis and root locus approach that takes into account the widely accepted second order sigma-delta modulator state variable upper bounds. Using proposed model we have found new feedback parameters limits that is a key parameter in single-bit IIR remodulator stability analysis. Further, an analysis of single-bit adaptive channel equalization in MATLAB has been performed, which is intended to support the design and development of efficient algorithm for single-bit channel equalization. A new mathematical model has been derived with all inputs, coefficients and outputs in single-bit domain. The model was simulated using narrowband signals in MATLAB and investigated on the basis of symbol error rate (SER), signal-to-noise ratio (SNR) and minimum mean squared error (MMSE). The results indicate that single-bit adaptive channel equalization is achievable with narrowband signals but that the harsh quantization noise has great impact in the convergence

    Analysis of indoor environment and performance of net-zero energy building with vacuum glazed windows

    Get PDF
    The total energy and indoor thermal environment of an office building, which aims at the net-zero energy building, were measured and analysed. The annual total primary energy consumption of ‘Measurement’ was smaller than the value of ‘Calculation’ at design phase and achieved net-zero. The result of analysis of the thermal environment shows that the comfortable thermal environment was maintained. Also, the insulation performance and heat balance of the vacuum glazed windows in winter was evaluated. The overall heat transfer coefficients calculated by using the monitoring data were almost equal to the rated overall heat transfer coefficient and the high insulation performance of vacuum glazed windows was maintained even in the second year’s operation. In addition, the amount of heat gain due to solar radiation on the window surface was much larger than the amount of heat loss due to transmission. The vacuum glazed windows with high thermal insulation performance on the south side can reduce the heating load and contribute to the achievement of net-zero in the buildings

    Thermal performance analysis of a new structured-core translucent vacuuminsulation panel in comparison to vacuum glazing: Experimental and theoretically validated analyses

    Get PDF
    The notion at which, nowadays, building sector is being recognized to be nearly zero-energy buildings (NZEBs) relies partly on the thermal performance of its fabric insulation. Vacuum glazing (VG) technology attracted the research interest as an option to reduce heat loss through windows. However, the total glazing thermal transmittance (U-value) for VG increases with the use of smaller glazing area due to the edge-seal effects, due to the thermal short-circuit around the edges and the overall construction cost of VG leading to an unaffordable option to deal with energy conservation of buildings. Therefore, this study aims to propose a new structured core transparent vacuum insulation panel (TVIP) to accomplish insulation for the windows without edge sealing effect, with lower cost and can be easily retrofitted to the conventional windows of the existing buildings. To do this, VG and TVIP were constructed and their thermal conductivity were measured using heat flow meter apparatus. In addition, a 3D finite volume model considering the effect of surface to surface radiation, gas conduction, and thermal bridges through the spacer material and sealing material is developed. The model is validated with the experiments in this work and with the data for VG in the literature. The effect of vacuum pressure increase is simulated to mimic the vacuum deterioration problem and the effect of glazing size on the insulation performance of both VG and TVIP were investigated. The results indicate that for a smaller glazing area of less than 30 cm × 30 cm, the TVIP accomplished lower U-value compared with the VG at vacuum pressure of 0.1 Pa and 1 Pa. While, at a vacuum pressure of 10 Pa, the TVIP attained a lower U-value over the entire range of the investigated glazing sizes. Further, the edge-seal effect in the VG is diminished with the use of TVIP. Furthermore, the material cost per unit area of the TVIP is three times less than the cost of VG at laboratory scale. The results of the current study can guide vacuum window designers and researchers to further enhance the performance of TVIP based window to compete for the VG in the markets
    • …
    corecore