11 research outputs found

    Endocytosis of plasma-derived factor V by megakaryocytes occurs via a clathrin-dependent, specific membrane binding event

    Full text link
    Megakaryocytes were analyzed for their ability to endocytose factor V to define the cellular mechanisms regulating this process. In contrast to fibrinogen, factor V was endocytosed by megakaryocytes derived from CD34 + cells or megakaryocyte-like cell lines, but not by platelets. CD41 + ex vivo -derived megakaryocytes endocytosed factor V, as did subpopulations of the megakaryocyte-like cells MEG-01, and CMK. Similar observations were made for fibrinogen. Phorbol diester-induced megakaryocytic differentiation of the cell lines resulted in a substantial increase in endocytosis of both proteins as compared to untreated cells that did not merely reflect their disparate plasma concentrations. Factor IX, which does not associate with platelets or megakaryocytes, was not endocytosed by any of the cells examined. Endocytosis of factor V by megakaryocytes proceeds through a specific and independent mechanism as CHRF-288 cells endocytosed fibrinogen but not factor V, and the presence of other plasma proteins had no effect on the endocytosis of factor V by MEG-01 cells. Furthermore, as the endocytosis of factor V was also demonstrated to occur through a clathrin-dependent mechanism, these combined data demonstrate that endocytosis of factor V by megakaryocytes occurs via a specific, independent, and most probably receptor-mediated, event.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75473/1/j.1538-7836.2005.01190.x.pd

    Integrin α5β1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation

    Get PDF
    During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis

    Degradation of Internalized αvβ5 Integrin Is Controlled by uPAR Bound uPA: Effect on β1 Integrin Activity and α-SMA Stress Fiber Assembly

    Get PDF
    Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2–4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf

    Collagen I matrix turnover is regulated by fibronectin polymerization

    No full text
    Extracellular matrix (ECM) remodeling occurs during normal homeostasis and also plays an important role during development, tissue repair, and in various disease processes. ECM remodeling involves changes in the synthesis, deposition, and degradation of ECM molecules. ECM molecules can be degraded extracellularly, as well as intracellularly following endocytosis. Our data show that the ECM protein fibronectin is an important regulator of ECM remodeling. We previously showed that agents that inhibit the polymerization of fibronectin into ECM fibrils promote the loss of preexisting fibronectin matrix and accelerate fibronectin endocytosis and degradation. In this paper we show that inhibition of fibronectin polymerization leads to the loss of collagen I matrix fibrils and a corresponding increase in the levels of endocytosed collagen I. In contrast, manipulations that stabilize fibronectin matrix fibrils, such as caveolin-1 depletion, stabilize collagen I matrix fibrils and cause a decrease in ECM collagen I endocytosis. Our data also show that endocytosis of ECM collagen I is regulated by both β1 integrins and Endo180/urokinase plasminogen activator associated protein (uPARAP). Unexpectedly, Endo180/uPARAP was also shown to promote the endocytosis of fibronectin from the ECM. These data demonstrate that fibronectin polymerization regulates the remodeling of ECM collagen I, in part, by regulating collagen I endocytosis. Furthermore, these data show that processes that regulate ECM deposition coordinately regulate the removal of proteins from the ECM. These data highlight the complexity of ECM remodeling. This multifaceted regulatory process may be important to ensure tight regulation of ECM fibronectin and collagen I levels

    Definitive endoderm derived from human embryonic stem cells highly express the integrin receptors αV and β5

    Get PDF
    Human embryonic stem cells (hESCs) can be directed to differentiate into a number of endoderm cell types, however mature functional cells have yet to be produced in vitro. This suggests that there may be important factors that have yet to be described, which may be essential for the proper derivation of these cells. One such factor is the integrin mediated interactions between a cell and the extracellular matrix (ECM). On this basis, the present study investigated the role of the ECM in the directed differentiation of hESCs to definitive endoderm via analysis of integrin gene expression. The results showed that definitive endoderm can be efficiently and effectively derived from hESCs in a feeder free, single defined ECM of laminin. Analysis of integrin expression also showed that definitive endoderm highly express the integrins αV and β5, which have the ability to bind to vitronectin, whilst expression of the pluripotency related laminin binding integrins α3, α6 and β4 were downregulated. This suggested a potential role of vitronectin binding integrins in the development of definitive endoderm

    Dual sources of vitronectin in the human lower urinary tract: synthesis by urothelium vs. extravasation from the bloodstream

    No full text
    Vitronectin (VN), secreted into the bloodstream by liver hepatocytes, is known to anchor epithelial cells to basement membranes through interactions with cell surface integrin receptors. We report here that VN is also synthesized by urothelial cells of urothelium in vivo and in vitro. In situ hybridization, dideoxy sequencing, immunohistochemistry, and ELISA of urothelial cell mRNA, cDNA, tissue, and protein extracts demonstrated that the VN gene is active in vivo and in vitro. The expression of VN by urothelium is hypothesized to constitute one of several pathways that anchor basal cells to an underlying substratum and explains why urothelial cells adhere to glass and propagate under serum-free conditions. Therefore, two sources of VN in the human urinary bladder are recognized: 1) localized synthesis by urothelial cells and 2) extravasation of liver VN through fenestrated capillaries. When human plasma was fractionated by denaturing heparin affinity chromatography, VN was isolated in a biologically active form that supported rapid spreading of urothelial cells in vitro under serum-free conditions. This activity was inhibited by the matricellular protein SPARC via direct binding of VN to SPARC through a Ca+2-dependent mechanism. A novel form of VN, isolated from the same heparin affinity chromatography column and designated as the VN(c) chromatomer, also supported cell spreading but failed to interact with SPARC. Therefore, the steady-state balance among urothelial cells, their extracellular milieu, and matricellular proteins constitutes a principal mechanism by which urothelia are anchored to an underlying substrata in the face of constant bladder cycling

    Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location

    No full text
    During adhesion and spreading, cells form micrometer-sized structures comprising transmembrane and intracellular protein clusters, giving rise to the formation of what is known as focal adhesions. Over the past two decades these structures have been extensively studied to elucidate their organization, assembly, and molecular composition, as well as to determine their functional role. Synthetic materials decorated with biological molecules, such as adhesive peptides, are widely used to induce specific cellular responses dependent on cell adhesion. Here, we focus on how surface patterning of such bioactive materials and organization at the nanoscale level has proven to be a useful strategy for mimicking both physical and chemical cues present in the extracellular space controlling cell adhesion and fate. This strategy for designing synthetic cellular environments makes use of the observation that most cell signaling events are initiated through recruitment and clustering of transmembrane receptors by extracellular-presented signaling molecules. These systems allow for studying protein clustering in cells and characterizing the signaling response induced by, e.g., integrin activation. We review the findings about the regulation of cell adhesion and focal adhesion assembly by micro- and nanopatterns and discuss the possible use of substrate stiffness and patterning in mimicking both physical and chemical cues of the extracellular space
    corecore