9 research outputs found
Functional Expression of Heme Oxygenase-1 in Human Differentiated Epidermis and Its Regulation by Cytokines
Although heme oxygenase-1 (HO-1) is induced in keratinocytes after UV radiation, HO-1 expression during normal epidermal differentiation has not yet been reported. We showed by real-time PCR, western blotting, and ELISA that HO-1 mRNA and protein expression by cultured normal human keratinocytes was upregulated during epidermal differentiation induced by a high-calcium medium. Immunohistochemical staining and in situ hybridization showed the graduated expression of HO-1 in the upper epidermis, which was accompanied by suprabasal HO-1 mRNA expression, and the accumulation of bilirubin (BR) in the stratum corneum. We examined the activation of nuclear factor E2-related factor 2 (Nrf2), which is a pivotal transcription factor for HO-1 expression, by western blotting and by examining the mRNA expression of Nrf2 target genes, and excluded its role in HO-1 expression in epidermal differentiation. Next, we examined the regulation of HO-1 expression by inflammatory cytokines. IL-4 and IL-22 significantly reduced HO-1 mRNA and protein expression, whereas IL-1β, IL-17A, and tumor necrosis factor-α (TNF-α) increased it. Finally, immunohistochemical studies on psoriatic lesional skin showed that HO-1 expression was downregulated in the parakeratotic epidermis, whereas it was retained in the orthokeratotic epidermis. These studies demonstrate that HO-1 is functionally expressed by keratinocytes in parallel with epidermal differentiation and that its expression is independently affected by several cytokines
Recommended from our members
A role of melatonin in neuroectodermal‐mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors
ABSTRACTSince mammalian skin expresses the enzymatic apparatus for melatonin synthesis, it may be an extrapineal site of melatonin synthesis. However, evidence is still lacking that this is really the case in situ. Here, we demonstrate melatonin‐like immunoreactivity (IR) in the outer root sheath (ORS) of mouse and human hair follicles (HFs), which corresponds to melatonin, as shown by radioimmunoassay and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The melatonin concentration in organ‐cultured mouse skin, mouse vibrissae follicles, and human scalp HFs far exceeds the respective melatonin serum level and is significantly increased ex vivo by stimulation with norepinephrine (NE), the key stimulus for pineal melatonin synthesis. By real‐time PCR, transcripts for the melatonin membrane receptor MT2 and for the nuclear mediator of melatonin signaling, retinoid orphan receptor α (ROR)α, are detectable in murine back skin. Transcript levels for these receptors fluctuate in a hair cycle‐dependent manner, and are maximal during apoptosis‐driven HF regression (catagen). Melatonin may play a role in hair cycle regulation, since its receptors (MT2 and RORα) are expressed in murine skin in a hair cycle‐dependent manner, and because it inhibits keratinocyte apoptosis and down‐regulates ERα expression. Therefore, the HF is both, a prominent extrapineal melatonin source, and an important peripheral melatonin target tissue. Regulated intrafollicular melatonin synthesis and signaling may play a previously unrecognized role in the endogenous controls of hair growth, for example, by modulating keratinocyte apoptosis during catagen and by desensitizing the HF to estrogen signaling. As a prototypic neuroectodermal‐mesodermal interaction model, the HF can be exploited for dissecting the obscure role of melatonin in such interactions in peripheral tissues
Identification and characterization of noncalcemic, tissue-selective, nonsecosteroidal vitamin D receptor modulators
Vitamin D receptor (VDR) ligands are therapeutic agents for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. VDR ligands also show immense potential as therapeutic agents for autoimmune diseases and cancers of skin, prostate, colon, and breast as well as leukemia. However, the major side effect of VDR ligands that limits their expanded use and clinical development is hypercalcemia that develops as a result of the action of these compounds mainly on intestine. In order to discover VDR ligands with less hypercalcemia liability, we sought to identify tissue-selective VDR modulators (VDRMs) that act as agonists in some cell types and lack activity in others. Here, we describe LY2108491 and LY2109866 as nonsecosteroidal VDRMs that function as potent agonists in keratinocytes, osteoblasts, and peripheral blood mononuclear cells but show poor activity in intestinal cells. Finally, these nonsecosteroidal VDRMs were less calcemic in vivo, and LY2108491 exhibited more than 270-fold improved therapeutic index over the naturally occurring VDR ligand 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in an in vivo preclinical surrogate model of psoriasis